Calculer le coût carbone de l'intelligence artificielle
Si vous recherchez des sujets intéressants, l'Intelligence Artificielle (IA) ne vous décevra pas. L'intelligence artificielle englobe un ensemble d'algorithmes statistiques puissants et époustouflants qui peuvent jouer aux échecs, déchiffrer une écriture manuscrite bâclée, comprendre la parole, classer des images satellite, et bien plus encore. La disponibilité d’ensembles de données géants pour la formation de modèles d’apprentissage automatique a été l’un des facteurs clés du succès de l’intelligence artificielle. Mais tout ce travail informatique n’est pas gratuit. Certains experts en IA sont de plus en plus préoccupés par les impacts environnementaux associés à la création de nouveaux algorithmes, un débat qui a suscité de nouvelles idées sur la manière de permettre aux machines d'apprendre plus efficacement afin de réduire l'empreinte carbone de l'IA.
De retour sur Terre
Pour entrer dans les détails, nous devons d'abord considérer les milliers de centres de données (disséminés dans le monde) qui gèrent nos demandes informatiques 24h/24 et 7j/7. Pour les chercheurs en IA, ces tâches incluent la formation d’algorithmes multicouches avec des milliards d’éléments de données (ou jetons – des bits de mots équivalents à quatre caractères ou environ 3/4 d’un mot en anglais). L’effort de calcul impliqué est étonnant. La société d'infrastructure d'intelligence artificielle Lambda fournit des faits intéressants sur GPT-3, le puissant modèle de langage naturel d'OpenAI pour générer du texte de type humain. Selon l'analyse de Lambda, si vous vouliez entraîner le modèle de 175 milliards de paramètres du GPT-3 sur un seul NVIDIA RTX 8000, cela prendrait 665 ans, ce qui n'est pas en reste lorsqu'il s'agit de cartes graphiques.
En termes simples, plus le modèle est grand, meilleures sont les performances. L'équipe de Lambda a souligné que la taille des modèles de langage de pointe augmente à un rythme de 10 fois par an, ce qui nous ramène aux préoccupations concernant. la croissance des empreintes de l’IA. De retour au centre de données, il est possible d'ajouter d'autres chiffres à la discussion, du moins à un niveau élevé. Selon les estimations de l'Agence internationale de l'énergie (AIE), la consommation totale d'électricité des centres de données mondiaux se situe entre 200 et 250 TWh. Pour rendre ce chiffre plus facile à visualiser, en supposant que les locomotives et le matériel roulant consomment en moyenne 2,5 kilowattheures par kilomètre parcouru, 225 térawattheures suffisent pour permettre à un train électrique à grande vitesse de parcourir 9 millions de kilomètres. Même si seule une partie (dans les centres de données) sera utilisée pour entraîner et exécuter des modèles d’IA, des sources indiquent que les demandes informatiques en matière d’apprentissage automatique et de formation dépassent la croissance moyenne de l’activité des centres de données.
À ce stade, il est juste de reconnaître que les centres de données réussissent bien à gérer leurs besoins énergétiques – les préoccupations environnementales sont un facteur de motivation, mais il convient de mentionner que l'électricité représente une dépense d'exploitation importante pour chaque installation qui est toutes « essentielle à sa mission ». Malgré une augmentation du trafic Internet mondial, en hausse de 40 % rien qu’en 2020, la consommation énergétique des centres de données est restée relativement stable au cours de la dernière décennie. "La forte croissance de la demande de services de centres de données continue d'être compensée par des gains d'efficacité continus dans les serveurs, le stockage, les commutateurs réseau et l'infrastructure des centres de données, ainsi que par la part croissante des services assurés par des centres de données cloud et hyperscale efficaces", a déclaré l'AIE. a écrit.
Photonique et plus encore
De plus, les opérateurs de centres de données verticalement intégrés comme Amazon, Google, Facebook, etc. ajouteront bientôt que leurs installations sont alimentées par des énergies renouvelables. Naturellement, cela réduit la charge environnementale du traitement des données, dans la mesure où l’électricité nécessaire à l’alimentation des racks de matériel informatique et aux services auxiliaires nécessaires tels que le chauffage, la climatisation et l’éclairage peut provenir du soleil et du vent. Cependant, comme le Financial Times ne l’a pas choisi, même si un accord énergétique sur un centre de données peut compenser 100 % de sa consommation électrique par des énergies renouvelables, les installations peuvent toujours consommer des combustibles fossiles lorsque l’énergie éolienne et solaire n’est pas disponible. Il faut également prendre en compte les émissions de carbone intégrées au dispositif informatique lui-même, car les méthodes de fabrication et les activités d’approvisionnement en composants et matériaux créent également des émissions de carbone – ce que Microsoft reconnaît.
Plus tôt cette année, Microsoft a abordé le sujet de la formation efficace des modèles dans un récent article de blog. Les développeurs sont occupés à explorer les moyens de réduire l’empreinte carbone de l’IA, ou du moins de freiner sa croissance. Les étapes ici incluent la recherche de moyens de réduire les besoins en calcul et en mémoire lors du réglage fin du modèle, avec des recommandations recommandant de diviser par trois l'utilisation du GPU au cours de cette étape du processus. La compression du modèle s'avère également prometteuse, dans laquelle les sous-couches de données d'IA sont élaguées en versions plus clairsemées mais toujours représentatives de conditions précédemment combinées. Ici, la recherche montre que la compression des modèles peut nécessiter environ 40 % de temps de formation en moins tout en obtenant des résultats algorithmiques similaires.
Les développeurs peuvent également bénéficier d'outils de veille qui permettront de repérer les gains réalisés en optimisant le code ou les modalités d'hébergement des données. "CodeCarbon est un progiciel léger qui s'intègre parfaitement à votre base de code Python", écrivent les inventeurs, qui mettent leur outil à disposition gratuitement. "Il estime la quantité de dioxyde de carbone (CO2) produite par les ressources cloud ou informatiques personnelles utilisées pour exécuter du code."
Cercle complet
Le cycle va et vient, et une IA plus économe en énergie pourrait être déployée à l’avenir pour aider à guider des opérations de centre de données plus efficaces afin de réduire – vous l’aurez deviné – l’empreinte carbone de l’IA. Aujourd'hui, Cirrus Nexus propose un logiciel que les opérateurs de centres de données peuvent utiliser pour attribuer un coût au carbone et le propager via des algorithmes d'intelligence artificielle. Les résultats montrent non seulement les calculs de CO2, mais fournissent également un aperçu de la manière dont les utilisateurs peuvent configurer leurs installations pour maximiser les avantages environnementaux disponibles.
Rendre visible l’empreinte carbone des algorithmes qui alimentent la technologie actuelle aide de plusieurs manières. Cela ouvre des discussions sur les moyens les plus efficaces de former l'intelligence artificielle du futur, rendant les services informatiques et leurs clients plus responsables des coûts environnementaux de l'informatique. En fin de compte, cela pourrait être bon pour les affaires. Notamment, Amazon a publié un outil d'empreinte carbone client plus tôt cette année, et d'autres grandes entreprises telles que Google permettent aux clients d'exporter des informations sur les émissions de carbone du cloud – un service actuellement en avant-première.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

01Aperçu des perspectives Actuellement, il est difficile d'atteindre un équilibre approprié entre efficacité de détection et résultats de détection. Nous avons développé un algorithme YOLOv5 amélioré pour la détection de cibles dans des images de télédétection optique haute résolution, en utilisant des pyramides de caractéristiques multicouches, des stratégies de têtes de détection multiples et des modules d'attention hybrides pour améliorer l'effet du réseau de détection de cibles dans les images de télédétection optique. Selon l'ensemble de données SIMD, le mAP du nouvel algorithme est 2,2 % meilleur que YOLOv5 et 8,48 % meilleur que YOLOX, permettant ainsi d'obtenir un meilleur équilibre entre les résultats de détection et la vitesse. 02 Contexte et motivation Avec le développement rapide de la technologie de télédétection, les images de télédétection optique à haute résolution ont été utilisées pour décrire de nombreux objets à la surface de la Terre, notamment des avions, des voitures, des bâtiments, etc. Détection d'objets dans l'interprétation d'images de télédétection

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S
