


Intelligence artificielle : trois façons dont la pandémie accélère son adoption
Au cours des dernières années, la nécessité pour les entreprises de créer rapidement de nouveaux modèles commerciaux et canaux de marketing a accéléré l'adoption de l'intelligence artificielle. Cela est particulièrement vrai dans le domaine de la santé, où l’analyse des données a accéléré le développement de vaccins contre la COVID-19. Dans le domaine des biens de consommation emballés, la Harvard Business Review a rapporté que Frito-Lay avait créé une plateforme de commerce électronique, Snacks.com, en seulement 30 jours.
La pandémie a également accéléré l'adoption de l'intelligence artificielle dans l'éducation, les écoles ayant été contraintes de permettre l'apprentissage en ligne du jour au lendemain. Chaque fois que cela sera possible, le monde passera aux transactions « sans contact », révolutionnant ainsi le secteur bancaire.
Trois développements technologiques pendant la pandémie de COVID-19 ont accéléré l'adoption de l'intelligence artificielle :
- Puissance de calcul et stockage toujours bon marché
- Nouvelle architecture de données
- Disponibilité de nouvelles sources de données
Avantages et inconvénients des développements de l'intelligence artificielle
Voici les avantages et les inconvénients de ces développements pour les responsables informatiques.
1. Une puissance de calcul toujours bon marché
Même 60 ans après la loi de Moore, la puissance de calcul continue de s'améliorer, avec des machines plus puissantes et davantage grâce à de nouvelles puces d'entreprises comme les capacités de traitement de NVidia. AIImpacts rapporte qu'« au cours des 25 dernières années, la puissance de calcul disponible par dollar a probablement été multipliée par dix (mesurée en FLOPS ou MIPS) environ tous les quatre ans ». Cependant, au cours des 6 à 8 dernières années, ce taux a ralenti.
Avantages : Faites plus avec moins
L'informatique bon marché offre aux responsables informatiques plus d'options, leur permettant de faire plus avec moins.
Inconvénients : Trop de choix peuvent entraîner une perte de temps et d'argent
Envisagez le Big Data. Avec une informatique bon marché, les professionnels de l’informatique veulent exploiter sa puissance. Les gens veulent commencer à ingérer et analyser toutes les données disponibles pour obtenir de meilleures informations, analyses et décisions.
Mais si vous ne faites pas attention, vous pouvez vous retrouver avec une énorme quantité de puissance de calcul et pas assez pour de vraies applications professionnelles.
À mesure que les coûts de réseau, de stockage et de calcul diminuent, les humains ont tendance à les utiliser davantage. Mais ils n’apportent pas nécessairement de valeur commerciale à tout.
2. Nouvelle architecture de données
Avant la pandémie de COVID-19, les termes « entrepôt de données » et « lac de données » étaient standards. Mais les nouvelles architectures de données telles que les « structures de données » et les « grilles de données » sont quasiment inexistantes. DataFabric soutient l'adoption de l'IA car elle permet aux entreprises d'utiliser les données pour maximiser leur chaîne de valeur en automatisant la découverte, la gouvernance et la consommation des données. Quel que soit l’endroit où résident les données, les entreprises peuvent fournir les bonnes données au bon moment.
Avantages : les responsables informatiques auront l'opportunité de repenser les modèles de données et la gouvernance des données
Cela offre l'opportunité d'inverser la tendance vers des référentiels de données centralisés ou des lacs de données. Cela pourrait signifier davantage d’informatique de pointe et de données disponibles là où elles sont les plus pertinentes. Ces progrès permettent d’utiliser automatiquement les données appropriées pour la prise de décision, ce qui est essentiel pour que l’IA soit exploitable.
Inconvénients : ne pas comprendre les besoins de l'entreprise
Les responsables informatiques doivent comprendre les aspects commerciaux et IA des nouvelles architectures de données. S’ils ne savent pas ce dont chaque partie de l’entreprise a besoin (y compris le type de données et où et comment elles seront utilisées), ils ne seront peut-être pas en mesure de créer le bon type d’architecture de données et de consommation de données pour obtenir le bon support. La compréhension par le service informatique des exigences métier et du modèle économique qui accompagne cette architecture de données est essentielle.
3. Nouvelles sources de données
Les recherches de Statista mettent en évidence la croissance des données : en 2020, la quantité totale de données créées, capturées, copiées et utilisées dans le monde était de 64,2 zettaoctets et devrait atteindre 180 zettaoctets d'ici 2025 octets ou plus. Un rapport de recherche de Statista de mai 2022 indiquait que « la croissance est plus élevée que prévu en raison de l'augmentation de la demande due à la nouvelle épidémie de couronne ». Les sources de Big Data comprennent les médias, le cloud computing, l'Internet des objets, les réseaux et les bases de données.
Avantages : Les données sont puissantes
Chaque décision et transaction peut être retracée jusqu'à la source de données. Les responsables informatiques sont plus autonomes s'ils peuvent utiliser AIOps/MLOps pour se concentrer sur les sources de données à des fins d'analyse et de prise de décision. Les bonnes données peuvent fournir une analyse commerciale instantanée et fournir des informations approfondies pour l'analyse prédictive.
Inconvénients : Comment savoir quelles données utiliser ?
Entourés de données issues de l'IoT, de l'edge computing, formatées et non formatées, intelligentes et inintelligibles, les responsables informatiques sont confrontés à la règle des 80/20 : 20 % de la confiance qui génère 80 % de la valeur commerciale. Quelles sont les données source? Comment utilisez-vous les opérations d’IA/ML pour déterminer les sources de données fiables et quelles sources de données doivent être utilisées pour l’analyse et la prise de décision ? Chaque entreprise a besoin de réponses à ces questions.
La technologie de base de l'IA évolue d'elle-même
L'intelligence artificielle devient omniprésente, alimentée par de nouveaux algorithmes et une puissance de calcul de plus en plus abondante et bon marché. Depuis plus de 70 ans, la technologie de l’intelligence artificielle est en pleine évolution. La pandémie n’a pas accéléré le développement de l’intelligence artificielle ; elle a accéléré son adoption.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site Web du 5 juillet, GlobalFoundries a publié un communiqué de presse le 1er juillet de cette année, annonçant l'acquisition de la technologie de nitrure de gallium (GaN) et du portefeuille de propriété intellectuelle de Tagore Technology, dans l'espoir d'élargir sa part de marché dans l'automobile et Internet. des objets et des domaines d'application des centres de données d'intelligence artificielle pour explorer une efficacité plus élevée et de meilleures performances. Alors que des technologies telles que l’intelligence artificielle générative (GenerativeAI) continuent de se développer dans le monde numérique, le nitrure de gallium (GaN) est devenu une solution clé pour une gestion durable et efficace de l’énergie, notamment dans les centres de données. Ce site Web citait l'annonce officielle selon laquelle, lors de cette acquisition, l'équipe d'ingénierie de Tagore Technology rejoindrait GF pour développer davantage la technologie du nitrure de gallium. g
