


Tendances de développement et enjeux du deep learning en 2022
Nous mettons derrière nous une autre année de développements passionnants dans le domaine de l'apprentissage profond de l'intelligence artificielle (IA), une année remplie d'avancées notables, de controverses et, bien sûr, de controverses. Alors que nous terminons 2022 et nous préparons à accueillir 2023, voici les tendances générales les plus notables en matière d’apprentissage profond cette année.
1. L'échelle reste un facteur important
Un thème qui est resté constant dans l'apprentissage profond au cours des dernières années est la volonté de créer des réseaux de neurones plus vastes. La disponibilité des ressources informatiques permet le développement d'architectures évolutives telles que des réseaux neuronaux évolutifs ainsi que du matériel d'IA spécialisé, de grands ensembles de données et des modèles de transformateurs.
Actuellement, les entreprises obtiennent de meilleurs résultats en étendant les réseaux de neurones à des échelles plus grandes. L'année dernière, DeepMind a publié Gopher, un grand modèle de langage (LLM) avec 280 milliards de paramètres ; Google a publié le modèle de langage Pathways (PaLM) avec 540 milliards de paramètres et le modèle de langage général (GLaM) avec jusqu'à 1 200 milliards de paramètres. Microsoft et NVIDIA ont publié Megatron-Turing NLG, un LLM de 530 milliards de paramètres.
L'un des aspects intéressants de l'échelle est la capacité d'émerger, où des modèles plus grands accomplissent avec succès des tâches qui seraient impossibles pour des modèles plus petits. Ce phénomène est particulièrement intéressant dans les LLM, où à mesure que l'échelle augmente, les modèles montrent des résultats prometteurs sur un plus large éventail de tâches et de tests.
Cependant, il convient de noter que même dans les modèles les plus grands, certains problèmes fondamentaux du deep learning restent non résolus (nous y reviendrons plus tard).
2. L'apprentissage non supervisé continue d'être efficace
De nombreuses applications d'apprentissage profond réussies nécessitent que les humains étiquetent les exemples de formation, également appelés apprentissage supervisé. Mais la plupart des données disponibles sur Internet ne sont pas accompagnées des étiquettes claires requises pour l’apprentissage supervisé. L'annotation des données est coûteuse et lente, créant des goulots d'étranglement. C'est pourquoi les chercheurs recherchent depuis longtemps des progrès dans l'apprentissage non supervisé, dans lequel les modèles d'apprentissage profond sont formés sans données annotées par l'homme.
Ce domaine a fait d'énormes progrès ces dernières années, notamment dans le domaine des LLM, qui sont pour la plupart formés sur des ensembles massifs de données brutes collectées sur Internet. Alors que le LL.M continue de gagner du terrain en 2022, nous constatons également que d’autres tendances en matière de techniques d’apprentissage non supervisé gagnent en popularité.
Par exemple, les modèles texte-image ont fait des progrès incroyables cette année. Des modèles tels que DALL-E 2 d’OpenAI, Imagen de Google et Stable Diffusion de Stability AI démontrent la puissance de l’apprentissage non supervisé. Contrairement aux anciens modèles de conversion texte-image qui nécessitent des paires d'images et de descriptions bien annotées, ces modèles utilisent de grands ensembles de données d'images faiblement sous-titrées qui existent déjà sur Internet. La taille même de leur ensemble de données de formation (ce qui n'est possible que parce qu'aucun étiquetage manuel n'est requis) et la variabilité des schémas de sous-titres permettent à ces modèles de trouver une variété de modèles complexes entre les informations textuelles et visuelles. Par conséquent, ils sont plus flexibles dans la génération d’images pour diverses descriptions.
3. La multimodalité a parcouru un long chemin
Les générateurs de texte en image ont une autre fonctionnalité intéressante : ils combinent plusieurs types de données dans un seul modèle. Être capable de gérer plusieurs modèles permet aux modèles d'apprentissage profond d'effectuer des tâches plus complexes.
La multimodalité est très importante pour l'intelligence humaine et animale. Par exemple, lorsque vous voyez un arbre et entendez le vent bruisser dans ses branches, votre cerveau peut rapidement les connecter. De même, lorsque vous voyez le mot « arbre », vous pouvez rapidement évoquer l’image d’un arbre, vous souvenir de l’odeur des pins après la pluie ou vous rappeler d’autres expériences que vous avez vécues auparavant.
De toute évidence, la multimodalité joue un rôle important en rendant les systèmes d'apprentissage profond plus flexibles. Ceci est peut-être mieux démontré par Gato de DeepMind, un modèle d'apprentissage en profondeur formé sur une variété de types de données, notamment des images, du texte et des données proprioceptives. Gato excelle dans plusieurs tâches, notamment le sous-titrage d'images, le dialogue interactif, le contrôle des bras robotiques et les jeux. Cela contraste avec les modèles classiques d’apprentissage en profondeur conçus pour effectuer une seule tâche.
Certains chercheurs ont proposé le concept selon lequel nous n'avons besoin que de systèmes comme Gato pour mettre en œuvre l'intelligence artificielle (AGI). Bien que de nombreux scientifiques ne soient pas d’accord avec ce point de vue, il est certain que la multimodalité a apporté d’importantes avancées en matière d’apprentissage profond.
4. Des problèmes fondamentaux dans le deep learning demeurent
Malgré les réalisations impressionnantes du deep learning, certains problèmes dans le domaine restent non résolus. Ceux-ci incluent la causalité, la compositionnalité, le bon sens, le raisonnement, la planification, la physique intuitive, ainsi que l’abstraction et l’analogie.
Voici quelques mystères de l'intelligence qui sont encore étudiés par des scientifiques dans différents domaines. Les approches d’apprentissage profond purement basées sur des données et à grande échelle ont permis de réaliser des progrès progressifs sur certains de ces problèmes, mais n’ont pas réussi à fournir des solutions claires.
Par exemple, un LLM plus volumineux peut maintenir la cohérence et l'homogénéité de textes plus longs. Mais ils ont échoué dans des tâches qui nécessitaient un raisonnement et une planification minutieux, étape par étape.
De même, les générateurs de texte en image créent des graphiques époustouflants mais commettent des erreurs fondamentales lorsqu'on leur demande de dessiner des images qui nécessitent une composition ou ont des descriptions complexes.
Différents scientifiques discutent et explorent ces défis, y compris certains pionniers du deep learning. Le plus célèbre d’entre eux est Yann LeCun, inventeur des réseaux de neurones convolutifs (CNN), lauréat du prix Turing, qui a récemment écrit un long article sur les limites des LLM qui apprennent uniquement du texte. LeCun travaille sur une architecture d'apprentissage en profondeur capable d'apprendre un modèle du monde et de résoudre certains des défis auxquels le domaine est actuellement confronté.
Le deep learning a parcouru un long chemin. Mais plus nous progressons, plus nous réalisons les défis liés à la création de systèmes véritablement intelligents. L’année prochaine sera certainement aussi excitante que cette année.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | Radis Skin Depuis la sortie du puissant AlphaFold2 en 2021, les scientifiques utilisent des modèles de prédiction de la structure des protéines pour cartographier diverses structures protéiques dans les cellules, découvrir des médicaments et dresser une « carte cosmique » de chaque interaction protéique connue. Tout à l'heure, Google DeepMind a publié le modèle AlphaFold3, capable d'effectuer des prédictions de structure conjointe pour des complexes comprenant des protéines, des acides nucléiques, de petites molécules, des ions et des résidus modifiés. La précision d’AlphaFold3 a été considérablement améliorée par rapport à de nombreux outils dédiés dans le passé (interaction protéine-ligand, interaction protéine-acide nucléique, prédiction anticorps-antigène). Cela montre qu’au sein d’un cadre unique et unifié d’apprentissage profond, il est possible de réaliser

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière
