


L'infraction à la peinture AI est confirmée ! Les modèles de diffusion peuvent mémoriser vos photos et toutes les méthodes de protection de la vie privée existantes seront inefficaces
Cet article est réimprimé avec l'autorisation d'AI New Media Qubit (ID de compte public : QbitAI). Veuillez contacter la source pour la réimpression.
L'infraction à la peinture AI est confirmée !
Les dernières recherches montrent que le modèle de diffusion gardera à l'espritles échantillons de l'ensemble d'entraînement et les "imitera" lors de leur génération.
En d'autres termes, dans les peintures IA générées par Stable Diffusion, derrière chaque coup il peut y avoir un incident d'infraction.
De plus, après recherche et comparaison, la capacité du modèle de diffusion à « plagier » à partir d'échantillons d'entraînement est deux fois supérieure à celle du GAN, et plus le modèle de diffusion est généré de manière efficace, plus sa capacité à mémoriser les échantillons d'entraînement est forte. Cette recherche provient d'une équipe composée de Google, DeepMind et UC Berkeley.toutes les méthodes existantes de protection de la vie privée sont invalides.
Dès que la nouvelle est tombée, les internautes ont explosé et l'auteur des tweets liés au journal était sur le point d'être retweeté par plus d'un millier.Modèle de diffusion Le principe est de supprimer le bruit puis de le restituer, donc ce que les chercheurs souhaitent étudier c'est en réalité : Est-ce qu'ils
se souviennent des images utilisées pour l'entraînement, et finalement « plagient » lors de la génération ?
Les images de l'ensemble de formation sont souvent obtenues sur Internet. Elles sont protégées par le droit d'auteur, sont déposées et certaines sont privées, comme les radiographies médicales privées. Afin de déterminer si le modèle de diffusion peutmémoriser et régénérerdes échantillons d'entraînement individuels, les chercheurs ont d'abord proposé une nouvelle définition de la « mémoire ».
D'une manière générale, la définition de la mémoire se concentre sur les modèles de langage textuel. Si le modèle peut être invité à récupérer une séquence mot par mot de l'ensemble d'entraînement, cela signifie que la séquence a été extraite et mémorisée. En revanche, l'équipe de recherchea défini la « mémoire » en fonction de la similarité des images.
Cependant, l'équipe admet aussi franchement que la définition de « mémoire » est conservatrice. Par exemple, l'image de gauche est une "photo d'Obama" générée à l'aide de Stable Diffusion. Cette photo n'est similaire à aucune image d'entraînement spécifique de droite, cette image ne peut donc pas être considérée comme générée de mémoire.extraction de données en deux étapes (attaque d'extraction de données) .
L'opération spécifique consiste à utiliser des méthodes standard pour générer des images, puis à étiqueter les images qui dépassent les critères de notation du raisonnement humain. En appliquant cette approche à la diffusion stable et à l'image, l'équipe a extrait plus de 100 copies approximatives ou identiques d'images d'entraînement. Il existe à la fois des photos personnelles identifiables et des logos de marques. Après inspection, la plupart d'entre elles sont protégées par le droit d'auteur.Ensuite, afin de mieux comprendre comment se produit la « mémoire », les chercheurs ont échantillonné 1 million de fois à partir du modèle et formé des centaines de modèles de diffusion sur CIFAR-10.
L'objectif est d'analyser quels comportements en matière de précision du modèle, d'hyperparamètres, d'amélioration et de déduplication ont un impact sur la confidentialité.
Je suis finalement arrivé à la conclusion suivante :
Tout d'abord, le modèle de diffusion a plus de mémoire que le GAN.
Mais les modèles de diffusion constituent également le groupe de pire confidentialité parmi les modèles d'images évalués, et ils divulguent plus de deux fois plus de données de formation que les GAN.
De plus, les modèles plus grands peuvent mémoriser plus de données.
Avec cette conclusion, les chercheurs ont également étudié le modèle de diffusion texte-image à 2 milliards de paramètres Imagen. Ils ont essayé d'extraire 500 images avec les scores les plus élevés en dehors de la distribution et les ont utilisées comme échantillons dans l'ensemble de données de formation. tout mémorisé.
En revanche, la même méthode a été appliquée à Stable Difusion et aucun comportement de mémoire n’a été identifié.
Par conséquent, Imagen a une confidentialité pire que Stable Difusion sur les images copiées et non copiées. Les chercheurs attribuent la raison au fait que le modèle utilisé par Imagen a une plus grande capacité que Stable Difusion, il mémorise donc plus d'images.
De plus, meilleurs modèles génératifs (valeurs FID inférieures) stockent plus de données.
En d’autres termes, au fil du temps, le même modèle divulgue davantage de confidentialité et enfreint davantage de droits d’auteur.
(Modèle GAN trié par FID, plus la valeur FID est faible, meilleur est l'effet)
En entraînant le modèle, l'équipe a découvert que une utilité croissante réduirait la confidentialité, de simples mesures défensives (telles que déduplication) )Pas suffisant pour résoudre complètement le problème de mémoire.
Par conséquent, les technologies améliorant la confidentialité ne fournissent pas un compromis acceptable entre confidentialité et utilité.
En fin de compte, l'équipe a formulé quatre recommandations à ces modèles de diffusion de formation :
- Il est recommandé de dédupliquer l'ensemble de données de formation et de minimiser le surentraînement ;
- Il est recommandé d'utiliser l'extraction de données ou d'autres techniques d'audit pour évaluer la confidentialité du modèle formé ; risques ;
- S'il existe une technologie de protection de la vie privée plus pratique, il est recommandé de l'utiliser autant que possible ;
- J'espère que les images générées par l'IA ne fourniront pas gratuitement aux utilisateurs des éléments liés à la vie privée.
Les titulaires des droits d'auteur n'ont jamais cessé de défendre leurs droits
Une fois la recherche publiée, elle pourrait avoir un impact sur les litiges en cours.
Fin janvier, le grand frère de la galerie, Getty Images(Getty Images), a assigné Stability AI devant la Haute Cour de Londres pour violation du droit d'auteur.
△Stability AI
Getty Images estime que Stability AI "a copié et traité illégalement des millions d'images protégées par le droit d'auteur" pour entraîner sa diffusion stable.
Une partie des données d'entraînement de Stable Difussion est open source. Après analyse et inspection des filigranes, il a été constaté que de nombreuses agences photo, dont Getty, avaient sans le savoir fourni une grande quantité de matériel pour l'ensemble de formation de Stable Difussion, représentant une grande proportion.
Mais du début à la fin, Stability AI n'a pas contacté l'agence photo.
De nombreuses sociétés d'IA pensent que cette pratique est protégée par des lois telles que la doctrine américaine sur l'utilisation équitable, mais la plupart des titulaires de droits d'auteur ne sont pas d'accord avec cette affirmation et estiment que ce comportement porte atteinte à leurs droits.
Bien que Stability AI ait précédemment publié une déclaration disant que dans la prochaine version, les titulaires de droits d'auteur pourront supprimer leurs propres œuvres protégées par le droit d'auteur dans la galerie de formation, mais à ce stade, il y a encore des gens qui ne sont pas convaincus.
Mi-janvier, trois artistes avaient porté plainte contre Stability AI et Midjourney.
Les experts juridiques ont également des opinions différentes afin de parvenir à une opinion unifiée, mais ils sont tous d'accord sur le fait que le tribunal doit se prononcer sur la question de la protection du droit d'auteur.
Le PDG de Getty Images, Craig Peters, a déclaré que la société avait envoyé un avis à Stability AI, disant "vous êtes sur le point d'être poursuivi en justice au Royaume-Uni" !
La société a également déclaré :
Nous ne nous soucions pas des pertes causées par la contrefaçon et nous n'avons pas l'intention d'arrêter le développement d'outils artistiques d'IA.
Poursuivre Stability AI en justice n'est pas dans l'intérêt de notre famille Getty.
Choisir de poursuivre en justice a un objectif plus profond à long terme, et j'espère que le tribunal établira de nouvelles lois pour réglementer le statu quo.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

0. À quoi sert cet article ? Nous proposons DepthFM : un modèle d'estimation de profondeur monoculaire génératif de pointe, polyvalent et rapide. En plus des tâches traditionnelles d'estimation de la profondeur, DepthFM démontre également des capacités de pointe dans les tâches en aval telles que l'inpainting en profondeur. DepthFM est efficace et peut synthétiser des cartes de profondeur en quelques étapes d'inférence. Lisons ce travail ensemble ~ 1. Titre des informations sur l'article : DepthFM : FastMonocularDepthEstimationwithFlowMatching Auteur : MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Imaginez un modèle d'intelligence artificielle qui non seulement a la capacité de surpasser l'informatique traditionnelle, mais qui permet également d'obtenir des performances plus efficaces à moindre coût. Ce n'est pas de la science-fiction, DeepSeek-V2[1], le modèle MoE open source le plus puissant au monde est ici. DeepSeek-V2 est un puissant mélange de modèle de langage d'experts (MoE) présentant les caractéristiques d'une formation économique et d'une inférence efficace. Il est constitué de 236B paramètres, dont 21B servent à activer chaque marqueur. Par rapport à DeepSeek67B, DeepSeek-V2 offre des performances plus élevées, tout en économisant 42,5 % des coûts de formation, en réduisant le cache KV de 93,3 % et en augmentant le débit de génération maximal à 5,76 fois. DeepSeek est une entreprise explorant l'intelligence artificielle générale

L’IA change effectivement les mathématiques. Récemment, Tao Zhexuan, qui a prêté une attention particulière à cette question, a transmis le dernier numéro du « Bulletin de l'American Mathematical Society » (Bulletin de l'American Mathematical Society). En se concentrant sur le thème « Les machines changeront-elles les mathématiques ? », de nombreux mathématiciens ont exprimé leurs opinions. L'ensemble du processus a été plein d'étincelles, intense et passionnant. L'auteur dispose d'une équipe solide, comprenant Akshay Venkatesh, lauréat de la médaille Fields, le mathématicien chinois Zheng Lejun, l'informaticien de l'Université de New York Ernest Davis et de nombreux autres universitaires bien connus du secteur. Le monde de l’IA a radicalement changé. Vous savez, bon nombre de ces articles ont été soumis il y a un an.

Boston Dynamics Atlas entre officiellement dans l’ère des robots électriques ! Hier, l'Atlas hydraulique s'est retiré "en larmes" de la scène de l'histoire. Aujourd'hui, Boston Dynamics a annoncé que l'Atlas électrique était au travail. Il semble que dans le domaine des robots humanoïdes commerciaux, Boston Dynamics soit déterminé à concurrencer Tesla. Après la sortie de la nouvelle vidéo, elle a déjà été visionnée par plus d’un million de personnes en seulement dix heures. Les personnes âgées partent et de nouveaux rôles apparaissent. C'est une nécessité historique. Il ne fait aucun doute que cette année est l’année explosive des robots humanoïdes. Les internautes ont commenté : Les progrès des robots ont fait ressembler la cérémonie d'ouverture de cette année à des êtres humains, et le degré de liberté est bien plus grand que celui des humains. Mais n'est-ce vraiment pas un film d'horreur ? Au début de la vidéo, Atlas est allongé calmement sur le sol, apparemment sur le dos. Ce qui suit est à couper le souffle

Plus tôt ce mois-ci, des chercheurs du MIT et d'autres institutions ont proposé une alternative très prometteuse au MLP – KAN. KAN surpasse MLP en termes de précision et d’interprétabilité. Et il peut surpasser le MLP fonctionnant avec un plus grand nombre de paramètres avec un très petit nombre de paramètres. Par exemple, les auteurs ont déclaré avoir utilisé KAN pour reproduire les résultats de DeepMind avec un réseau plus petit et un degré d'automatisation plus élevé. Plus précisément, le MLP de DeepMind compte environ 300 000 paramètres, tandis que le KAN n'en compte qu'environ 200. KAN a une base mathématique solide comme MLP est basé sur le théorème d'approximation universelle, tandis que KAN est basé sur le théorème de représentation de Kolmogorov-Arnold. Comme le montre la figure ci-dessous, KAN a

Je pleure à mort. Le monde construit à la folie de grands modèles. Les données sur Internet ne suffisent pas du tout. Le modèle de formation ressemble à « The Hunger Games », et les chercheurs en IA du monde entier se demandent comment nourrir ces personnes avides de données. Ce problème est particulièrement important dans les tâches multimodales. À une époque où rien ne pouvait être fait, une équipe de start-up du département de l'Université Renmin de Chine a utilisé son propre nouveau modèle pour devenir la première en Chine à faire de « l'auto-alimentation des données générées par le modèle » une réalité. De plus, il s’agit d’une approche à deux volets, du côté compréhension et du côté génération, les deux côtés peuvent générer de nouvelles données multimodales de haute qualité et fournir un retour de données au modèle lui-même. Qu'est-ce qu'un modèle ? Awaker 1.0, un grand modèle multimodal qui vient d'apparaître sur le Forum Zhongguancun. Qui est l'équipe ? Moteur Sophon. Fondé par Gao Yizhao, doctorant à la Hillhouse School of Artificial Intelligence de l’Université Renmin.

Quoi? Zootopie est-elle concrétisée par l’IA domestique ? Avec la vidéo est exposé un nouveau modèle de génération vidéo domestique à grande échelle appelé « Keling ». Sora utilise une voie technique similaire et combine un certain nombre d'innovations technologiques auto-développées pour produire des vidéos qui comportent non seulement des mouvements larges et raisonnables, mais qui simulent également les caractéristiques du monde physique et possèdent de fortes capacités de combinaison conceptuelle et d'imagination. Selon les données, Keling prend en charge la génération de vidéos ultra-longues allant jusqu'à 2 minutes à 30 ips, avec des résolutions allant jusqu'à 1080p, et prend en charge plusieurs formats d'image. Un autre point important est que Keling n'est pas une démo ou une démonstration de résultats vidéo publiée par le laboratoire, mais une application au niveau produit lancée par Kuaishou, un acteur leader dans le domaine de la vidéo courte. De plus, l'objectif principal est d'être pragmatique, de ne pas faire de chèques en blanc et de se mettre en ligne dès sa sortie. Le grand modèle de Ke Ling est déjà sorti à Kuaiying.

La dernière vidéo du robot Optimus de Tesla est sortie, et il peut déjà fonctionner en usine. À vitesse normale, il trie les batteries (les batteries 4680 de Tesla) comme ceci : Le responsable a également publié à quoi cela ressemble à une vitesse 20 fois supérieure - sur un petit "poste de travail", en sélectionnant et en sélectionnant et en sélectionnant : Cette fois, il est publié L'un des points forts de la vidéo est qu'Optimus réalise ce travail en usine, de manière totalement autonome, sans intervention humaine tout au long du processus. Et du point de vue d'Optimus, il peut également récupérer et placer la batterie tordue, en se concentrant sur la correction automatique des erreurs : concernant la main d'Optimus, le scientifique de NVIDIA Jim Fan a donné une évaluation élevée : la main d'Optimus est l'un des robots à cinq doigts du monde. le plus adroit. Ses mains ne sont pas seulement tactiles
