


Google réutilise des algorithmes classiques d'il y a 30 ans et CV introduit l'apprentissage par renforcement. Internautes : le RLHF visuel arrive-t-il ?
La popularité de ChatGPT est évidente pour tous, et pour la technologie derrière son succès, le réglage fin de l'instruction supervisée et l'apprentissage par renforcement basé sur les commentaires humains sont cruciaux. Ces techniques s’étendent également progressivement à d’autres domaines de l’IA, notamment la vision par ordinateur (CV).
Nous savons que lorsqu'il s'agit de résultats complexes en vision par ordinateur, le principal critère de réussite n'est pas la façon dont le modèle est optimisé pour les objectifs de formation, mais la façon dont les capacités prédictives correspondent à la tâche, c'est-à-dire dans quelle mesure le modèle fonctionne pour l'usage prévu.
Afin de poursuivre cette cohérence, certains chercheurs ont apporté quelques améliorations à l'architecture des modèles, aux données, à l'optimisation, à l'échantillonnage, au post-traitement, etc. Par exemple, dans la tâche de détection d'objets, les chercheurs ont utilisé NMS (suppression non maximale), une perte globale basée sur un ensemble et la modification des données d'entrée pour obtenir des modèles avec un comportement amélioré au moment du test. Bien que ces méthodes apportent des avantages significatifs, elles ne sont souvent utiles que pour des tâches spécifiques et n’optimisent qu’indirectement les risques de la mission.
Non seulement le CV, mais aussi le traitement du langage naturel (NLP), l'apprentissage par renforcement (RL) et d'autres domaines étudient également largement ce phénomène. Dans ces domaines, il est très difficile de formuler des objectifs d’optimisation pour des tâches moins bien définies, comme la traduction ou la génération de résumés. Face à ce type de problème, Une approche populaire consiste à apprendre à imiter le résultat de l'exemple, puis à effectuer un apprentissage par renforcement pour aligner le modèle avec la fonction de récompense. Le domaine de la PNL a produit des résultats passionnants grâce à cette approche, qui utilise de grands modèles de langage pré-entraînés et des récompenses définies par la rétroaction humaine pour aborder des tâches autrement difficiles à spécifier.
De plus, la même méthode est largement utilisée dans les tâches de sous-titrage d'images, où CIDEr (proposé par Vedantam et al. 2015) est utilisé comme récompense. Néanmoins, à notre connaissance, l’optimisation des récompenses n’a pas encore été explorée dans les tâches de vision par ordinateur (non textuelles).
Récemment, des chercheurs de l'équipe Google Brain ont prouvé dans l'article "Tuning Computer Vision Models with Task Rewards" que utilise l'algorithme REINFORCE (proposé par Williams en 1992) pour régler (Tuning) un modèle pré-entraîné avec une fonction de récompense Peut être utilisée pour une variété de tâches de vision par ordinateur prêtes à l'emploi .
En fait, de nombreuses études sur les tâches d'apprentissage par renforcement mentionneront l'algorithme REINFORCE de Williams, ce qui montre l'importance de cet algorithme. On peut dire que l'algorithme REINFORCE est un représentant typique du gradient politique et même de l'apprentissage par renforcement.
Adresse papier : https://arxiv.org/pdf/2302.08242v1.pdf
La figure 1 montre quelques résultats clés, comprenant principalement des bandes d'optimisation de récompense pour la détection de cibles, la segmentation panoramique et la coloration quantitative des images. et des améliorations qualitatives. La méthode proposée dans cette étude est simple et efficace pour gérer diverses tâches de CV, démontrant sa polyvalence et son adaptabilité. Bien que cet article utilise principalement des récompenses sous forme de mesures d'évaluation, ces résultats préliminaires montrent que cette méthode peut également être un moyen efficace d'optimiser les modèles de vision par ordinateur qui ont des récompenses plus complexes et difficiles à spécifier, telles que la rétroaction humaine ou les performances globales des systèmes. .
Les utilisateurs de Twitter ont donné un résumé relativement complet de cet article, c'est-à-dire que la fonction implémentée dans cet article est d'utiliser RL pour ajuster le modèle visuel pré-entraîné. La motivation de la recherche a été inspirée par le succès de l'apprentissage par renforcement LLM ; l'effet a été une amélioration significative des performances en matière de détection de cibles, de segmentation panoramique, etc. Il a également déclaré que cette recherche pourrait être un moyen efficace d’obtenir un RLHF visuel (Reinforcement Learning from Human Feedback).
Source : https://twitter.com/johnjnay/status/1627009121378598912
Récompense
Sans perte de généralisation, l'étude décrit la tâche CV comme le processus d'apprentissage d'une fonction qui mappe l'entrée x (c'est-à-dire l'image) à la sortie y = [y_1, y_1,… , y_n] (séquence de jetons de texte, séquence de boîtes englobantes, etc.). Cette recherche vise à apprendre une distribution conditionnelle P (y|x, θ) avec θ comme paramètre pour maximiser la fonction de récompense R. Pour utiliser une formule abstraite pour le décrire, cet article résoudra les problèmes d'optimisation suivants.
Maintenant que le problème est là, l'étape suivante consiste à savoir comment le résoudre. Cet article comprend deux étapes : premièrement, utilisez l'estimation du maximum de vraisemblance pour pré-entraîner le modèle, puis utilisez l'algorithme REINFORCE ; régler le modèle. Jetons un coup d'œil au processus spécifique de ces deux étapes :
Pré-entraînement du maximum de vraisemblance
Utilisez d'abord le principe du maximum de vraisemblance pour estimer le paramètre θ et capturer la distribution des données d'entraînement. Ceci est réalisé à l'aide de l'algorithme de descente de gradient, qui fonctionne en maximisant la vraisemblance logarithmique
des données d'entraînement. L'algorithme 1 et la figure 2 décrivent l'étape d'optimisation MLE (estimation du maximum de vraisemblance), qui est la méthode la plus courante pour l'entraînement des modèles. La réalisation de cette étape aboutira à un modèle MLE.
L'algorithme REINFORC maximise la récompense
Afin de mieux optimiser le modèle MLE pour s'adapter au risque de la tâche, il est également nécessaire de maximiser la fonction de récompense. Pour une entrée x donnée, cette étude utilise l'algorithme REINFORCE pour estimer le gradient de la récompense attendue pour un x donné, et la formule est la suivante :
L'algorithme 2 fournit un pseudocode, et la figure 3 illustre le processus. :
Résultats expérimentaux
Ensuite, jetons un coup d'œil aux performances de la méthode proposée dans cet article sur les tâches visuelles.
Segmentation panoramique
Comme le montre le tableau 1 ci-dessous, le processus de réglage améliore considérablement le modèle MLE. Les résultats après inspection visuelle montrent que le modèle après réglage est plus efficace pour éviter les prédictions incohérentes, en particulier pour les objets à petite échelle, voir Figure 1. Le tableau 2 montre que grâce à l'optimisation, cette étude améliore considérablement le score mAP du modèle MLE original de 39,2 % à 54,3 %. Dans Pix2seq, le modèle ViT-B de même taille avec une résolution légèrement plus grande de 1333×1333 et de nombreuses heuristiques a atteint 47,1 %. En utilisant le plus grand squelette ViT-L, Pix2seq a rapporté le meilleur résultat de détection de cible de 50,0 %.
Coloriage Les résultats qualitatifs présentés dans la figure 4 montrent clairement que le nouveau modèle produit systématiquement des images plus colorées.
Description de l'image
Tableau 3 Les résultats montrent que l'application de la méthode proposée peut améliorer le modèle MLE, ce qui est cohérent avec les observations précédentes de la littérature, démontrant que la méthode est adapté à l’efficacité du réglage pour des risques spécifiques à la mission.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Imaginez un modèle d'intelligence artificielle qui non seulement a la capacité de surpasser l'informatique traditionnelle, mais qui permet également d'obtenir des performances plus efficaces à moindre coût. Ce n'est pas de la science-fiction, DeepSeek-V2[1], le modèle MoE open source le plus puissant au monde est ici. DeepSeek-V2 est un puissant mélange de modèle de langage d'experts (MoE) présentant les caractéristiques d'une formation économique et d'une inférence efficace. Il est constitué de 236B paramètres, dont 21B servent à activer chaque marqueur. Par rapport à DeepSeek67B, DeepSeek-V2 offre des performances plus élevées, tout en économisant 42,5 % des coûts de formation, en réduisant le cache KV de 93,3 % et en augmentant le débit de génération maximal à 5,76 fois. DeepSeek est une entreprise explorant l'intelligence artificielle générale

L’IA change effectivement les mathématiques. Récemment, Tao Zhexuan, qui a prêté une attention particulière à cette question, a transmis le dernier numéro du « Bulletin de l'American Mathematical Society » (Bulletin de l'American Mathematical Society). En se concentrant sur le thème « Les machines changeront-elles les mathématiques ? », de nombreux mathématiciens ont exprimé leurs opinions. L'ensemble du processus a été plein d'étincelles, intense et passionnant. L'auteur dispose d'une équipe solide, comprenant Akshay Venkatesh, lauréat de la médaille Fields, le mathématicien chinois Zheng Lejun, l'informaticien de l'Université de New York Ernest Davis et de nombreux autres universitaires bien connus du secteur. Le monde de l’IA a radicalement changé. Vous savez, bon nombre de ces articles ont été soumis il y a un an.

Les performances de JAX, promu par Google, ont dépassé celles de Pytorch et TensorFlow lors de récents tests de référence, se classant au premier rang sur 7 indicateurs. Et le test n’a pas été fait sur le TPU présentant les meilleures performances JAX. Bien que parmi les développeurs, Pytorch soit toujours plus populaire que Tensorflow. Mais à l’avenir, des modèles plus volumineux seront peut-être formés et exécutés sur la base de la plate-forme JAX. Modèles Récemment, l'équipe Keras a comparé trois backends (TensorFlow, JAX, PyTorch) avec l'implémentation native de PyTorch et Keras2 avec TensorFlow. Premièrement, ils sélectionnent un ensemble de

Boston Dynamics Atlas entre officiellement dans l’ère des robots électriques ! Hier, l'Atlas hydraulique s'est retiré "en larmes" de la scène de l'histoire. Aujourd'hui, Boston Dynamics a annoncé que l'Atlas électrique était au travail. Il semble que dans le domaine des robots humanoïdes commerciaux, Boston Dynamics soit déterminé à concurrencer Tesla. Après la sortie de la nouvelle vidéo, elle a déjà été visionnée par plus d’un million de personnes en seulement dix heures. Les personnes âgées partent et de nouveaux rôles apparaissent. C'est une nécessité historique. Il ne fait aucun doute que cette année est l’année explosive des robots humanoïdes. Les internautes ont commenté : Les progrès des robots ont fait ressembler la cérémonie d'ouverture de cette année à des êtres humains, et le degré de liberté est bien plus grand que celui des humains. Mais n'est-ce vraiment pas un film d'horreur ? Au début de la vidéo, Atlas est allongé calmement sur le sol, apparemment sur le dos. Ce qui suit est à couper le souffle

Plus tôt ce mois-ci, des chercheurs du MIT et d'autres institutions ont proposé une alternative très prometteuse au MLP – KAN. KAN surpasse MLP en termes de précision et d’interprétabilité. Et il peut surpasser le MLP fonctionnant avec un plus grand nombre de paramètres avec un très petit nombre de paramètres. Par exemple, les auteurs ont déclaré avoir utilisé KAN pour reproduire les résultats de DeepMind avec un réseau plus petit et un degré d'automatisation plus élevé. Plus précisément, le MLP de DeepMind compte environ 300 000 paramètres, tandis que le KAN n'en compte qu'environ 200. KAN a une base mathématique solide comme MLP est basé sur le théorème d'approximation universelle, tandis que KAN est basé sur le théorème de représentation de Kolmogorov-Arnold. Comme le montre la figure ci-dessous, KAN a

La dernière vidéo du robot Optimus de Tesla est sortie, et il peut déjà fonctionner en usine. À vitesse normale, il trie les batteries (les batteries 4680 de Tesla) comme ceci : Le responsable a également publié à quoi cela ressemble à une vitesse 20 fois supérieure - sur un petit "poste de travail", en sélectionnant et en sélectionnant et en sélectionnant : Cette fois, il est publié L'un des points forts de la vidéo est qu'Optimus réalise ce travail en usine, de manière totalement autonome, sans intervention humaine tout au long du processus. Et du point de vue d'Optimus, il peut également récupérer et placer la batterie tordue, en se concentrant sur la correction automatique des erreurs : concernant la main d'Optimus, le scientifique de NVIDIA Jim Fan a donné une évaluation élevée : la main d'Optimus est l'un des robots à cinq doigts du monde. le plus adroit. Ses mains ne sont pas seulement tactiles

La détection de cibles est un problème relativement mature dans les systèmes de conduite autonome, parmi lesquels la détection des piétons est l'un des premiers algorithmes à être déployés. Des recherches très complètes ont été menées dans la plupart des articles. Cependant, la perception de la distance à l’aide de caméras fisheye pour une vue panoramique est relativement moins étudiée. En raison de la distorsion radiale importante, la représentation standard du cadre de délimitation est difficile à mettre en œuvre dans les caméras fisheye. Pour alléger la description ci-dessus, nous explorons les conceptions étendues de boîtes englobantes, d'ellipses et de polygones généraux dans des représentations polaires/angulaires et définissons une métrique de segmentation d'instance mIOU pour analyser ces représentations. Le modèle fisheyeDetNet proposé avec une forme polygonale surpasse les autres modèles et atteint simultanément 49,5 % de mAP sur l'ensemble de données de la caméra fisheye Valeo pour la conduite autonome.

Lien du projet écrit devant : https://nianticlabs.github.io/mickey/ Étant donné deux images, la pose de la caméra entre elles peut être estimée en établissant la correspondance entre les images. En règle générale, ces correspondances sont 2D à 2D et nos poses estimées sont à échelle indéterminée. Certaines applications, telles que la réalité augmentée instantanée, à tout moment et en tout lieu, nécessitent une estimation de pose des métriques d'échelle, elles s'appuient donc sur des estimateurs de profondeur externes pour récupérer l'échelle. Cet article propose MicKey, un processus de correspondance de points clés capable de prédire les correspondances métriques dans l'espace d'une caméra 3D. En apprenant la correspondance des coordonnées 3D entre les images, nous sommes en mesure de déduire des métriques relatives.
