


Près de dix mille personnes ont regardé le dernier discours de Hinton : Algorithme d'entraînement des réseaux neuronaux Forward-Forward, l'article a été rendu public
La conférence NeurIPS 2022 bat son plein. Des experts et des universitaires de tous horizons communiquent et discutent de nombreux domaines subdivisés tels que l'apprentissage profond, la vision par ordinateur, l'apprentissage automatique à grande échelle, la théorie de l'apprentissage, l'optimisation et la théorie clairsemée.
Lors de la réunion, Geoffrey Hinton, lauréat du prix Turing et pionnier de l'apprentissage profond, a été invité à prononcer un discours en reconnaissance de l'article "ImageNet Classification with Deep Convolutional Neural Networks" qu'il a co-écrit avec ses étudiants diplômés Alex Krizhevsky et Ilya. Sutskever a reçu il y a dix ans le Time-testing Award pour son « impact considérable » sur le domaine. Publiés en 2012, ces travaux marquaient la première fois qu'un réseau neuronal convolutif atteignait des performances de niveau humain dans le cadre du concours de reconnaissance d'images ImageNet, et c'était un événement clé qui lançait la troisième vague de l'intelligence artificielle.
Hinton Le thème de ce discours est "L'algorithme Forward-Forward pour la formation des réseaux de neurones profonds". Dans son discours, Geoffrey Hinton a déclaré : « La communauté de recherche sur l'apprentissage automatique a mis du temps à réaliser l'impact de l'apprentissage profond sur la façon dont les ordinateurs sont construits. » Il pense que les formes d'apprentissage automatique de l'intelligence artificielle déclencheront des changements dans les systèmes informatiques. , c'est une nouvelle combinaison soft et hard qui met l'IA "dans votre grille-pain". Il a poursuivi : "Je pense que nous allons voir un type d'ordinateur complètement différent, et même si cela ne sera pas possible avant quelques années, il y a de bonnes raisons de travailler sur cet ordinateur complètement différent
."
Construire un nouveau type d'ordinateur complètement différent
À ce jour, tous les ordinateurs numériques ont été construits pour être "immortels", où le matériel est conçu pour être extrêmement fiable afin que le même logiciel puisse fonctionner partout. "Nous pouvons exécuter le même programme sur différents matériels physiques, et la connaissance est immortelle."
Hinton a déclaré que cette exigence de conception signifie que les ordinateurs numériques ont manqué "les diverses variables, le caractère aléatoire et l'instabilité du matériel, la simulation et le manque de fiabilité. fonctionnalités" qui peuvent nous être très utiles.
Selon Hinton,
les futurs systèmes informatiques adopteront une approche différente : ils seront « neuromorphiques » et mortels . Cela signifie que chaque ordinateur sera un mariage étroit de logiciels de réseau neuronal et de matériel disjoint, dans le sens où il comportera des composants analogiques plutôt que numériques, qui peuvent contenir un élément d'incertitude et évoluer au fil du temps.
Hinton a expliqué : "L'alternative maintenant est que nous abandonnons la séparation du matériel et des logiciels, mais les informaticiens n'aiment vraiment pas cette approche
C'est ce qu'on appelle le calcul mortel." , les connaissances apprises par le système et le matériel sont indissociables. Ces ordinateurs ordinaires peuvent « grandir » à partir d’usines de fabrication de puces coûteuses.
Hinton souligne que si nous faisons cela, nous pouvons utiliser un calcul analogique à très faible consommation et utiliser des poids de memristor pour effectuer des téraflops de traitement parallèle. Il s’agit d’une puce expérimentale vieille de plusieurs décennies basée sur des composants de circuits non linéaires. De plus, nous pouvons faire évoluer le matériel sans comprendre la qualité précise du comportement précis des différents éléments du matériel.
Cependant, Hinton a également déclaré que le nouvel ordinateur ordinaire ne remplacera pas l'ordinateur numérique traditionnel. "Ce n'est pas un ordinateur qui contrôle votre compte bancaire et il ne sait pas non plus exactement combien d'argent vous avez
." Il s'agit d'un ordinateur utilisé pour héberger (c'est-à-dire traiter) d'autres choses, par exemple, il pourrait utiliser un dollar pour "mettre quelque chose comme le GPT-3 dans votre grille-pain" afin qu'il ne prenne que quelques watts de puissance pour correspondre à sa propre conversation sur le grille-pain.
Réseaux FF adaptés au matériel informatique courant
Dans cette présentation, Hinton a passé la majeure partie de la discussion à parler d'une nouvelle approche de réseau neuronal qu'il a appelée réseaux Forward-Forward (FF), qui a remplacé presque la technique de rétropropagation utilisée dans tous réseaux de neurones. Hinton a proposé qu'en supprimant la rétropropagation, les réseaux directs pourraient se rapprocher plus raisonnablement de ce qui se passe dans le cerveau dans la vie réelle.
Ce projet de document est publié sur la page d'accueil de Hinton à l'Université de Toronto :
Lien du document : https://www.cs.toronto.edu/~hinton/FFA13.pdf
Hinton a déclaré que la méthode FF pourrait être plus adaptée au matériel informatique ordinaire. "Pour faire quelque chose comme ça actuellement, nous devons avoir un programme d'apprentissage qui va fonctionner sur du matériel propriétaire, et il doit apprendre à exploiter les propriétés spécifiques de ce matériel propriétaire, sans savoir quelles sont toutes ces propriétés. Mais je pense que le L'algorithme forward est une option avec du potentiel."
Un obstacle à la construction de nouveaux ordinateurs analogiques, a-t-il déclaré, est l'importance accordée à la fiabilité de l'exécution d'un logiciel sur des millions d'appareils. "Chacun de ces téléphones doit commencer comme un babyphone, et il doit apprendre à devenir un téléphone", a déclaré Hinton. "Et c'est très douloureux."
Même les ingénieurs les plus qualifiés seront réticents à abandonner le paradigme d'un ordinateur immortel parfait et identique par peur de l'incertitude.
Hinton a déclaré : « Parmi les personnes qui s'intéressent à l'informatique analogique, il y a encore un très petit nombre de personnes qui sont prêtes à renoncer à l'immortalité. C'est à cause de leur attachement à la cohérence et à la prévisibilité. Mais si vous voulez matériel analogique pour le faire à chaque fois. Même chose, tôt ou tard, vous rencontrez de vrais problèmes avec tout ce désordre. sur certaines petites tâches. L'effet sur la question est assez bon. Le contenu spécifique est le suivant :
Quel est le problème avec la rétropropagation ?
Le succès de l'apprentissage profond au cours de la dernière décennie a établi l'efficacité de la descente de gradient stochastique avec un grand nombre de paramètres et de grandes quantités de données. Le gradient est généralement calculé par rétropropagation, ce qui a conduit à se demander si le cerveau met en œuvre la rétropropagation ou s'il existe d'autres moyens d'obtenir les gradients nécessaires pour ajuster les poids de connexion.
La rétropropagation reste peu plausible en tant que modèle d'apprentissage du cortex cérébral, malgré des efforts considérables pour la mettre en œuvre comme de vrais neurones. Il n'existe actuellement aucune preuve convaincante que le cortex cérébral propage explicitement des dérivés d'erreur ou stocke une activité neuronale pour une utilisation dans une rétro-propagation ultérieure. Les connexions descendantes d'une zone corticale vers des zones situées plus tôt dans le chemin visuel n'étaient pas comme prévu, c'est-à-dire que des connexions ascendantes se produiraient si la rétropropagation était utilisée dans le système visuel. Au lieu de cela, ils forment des boucles dans lesquelles l’activité neuronale traverse environ une demi-douzaine de couches corticales dans deux régions, puis retourne à son point de départ.La rétropropagation dans le temps est particulièrement peu fiable comme moyen d'apprendre des séquences. Afin de traiter un flux d’entrées sensorielles sans interruptions fréquentes, le cerveau doit faire passer les données sensorielles à travers différentes étapes de traitement sensoriel. Il nécessite un programme d’apprentissage capable d’apprendre « à la volée ». Les représentations des étapes ultérieures du pipeline peuvent fournir des informations descendantes qui affectent les représentations des étapes antérieures du pipeline au cours des étapes ultérieures, mais le système de perception doit raisonner et apprendre en temps réel sans s'arrêter pour effectuer une rétropropagation.
Une autre limitation sérieuse de la rétropropagation est qu'elle nécessite une connaissance complète des calculs effectués lors de la passe avant afin de calculer les dérivées correctes. Si nous insérons une boîte noire dans la passe avant, alors la rétropropagation n'est plus possible à moins que nous n'apprenions un modèle différentiable de la boîte noire. Comme nous le verrons, la boîte noire ne change en rien la procédure d’apprentissage de l’algorithme FF, puisqu’il n’est pas nécessaire de rétro-propager à travers elle.
En l'absence d'un modèle de passe avant parfait, on pourrait recourir à l'une des nombreuses formes d'apprentissage par renforcement. L'idée est d'effectuer des perturbations aléatoires sur les poids ou l'activité neuronale et de relier ces perturbations aux changements dans la fonction de paiement. Mais les programmes d’apprentissage par renforcement souffrent d’une grande variabilité : il est difficile de voir l’effet de la perturbation d’une variable lorsque de nombreuses autres variables sont perturbées simultanément. Afin de faire la moyenne du bruit provoqué par toutes les autres perturbations, le taux d'apprentissage doit être inversement proportionnel au nombre de variables perturbées, ce qui signifie que l'apprentissage par renforcement s'adapte mal et ne peut pas être comparé à l'inverse pour les grands réseaux contenant des millions ou des milliards de paramètres. Concours de communication. Le point principal de cet article est que les réseaux de neurones contenant des non-linéarités inconnues n'ont pas besoin de recourir à l'apprentissage par renforcement. L'algorithme FF est comparable en vitesse à la rétropropagation, mais présente l'avantage d'être utilisé lorsque les détails précis du calcul direct ne sont pas connus. Il présente également l’avantage de pouvoir apprendre en pipeline sur des données séquentielles via un réseau neuronal, sans avoir besoin de stocker l’activité neuronale ou d’arrêter de propager des dérivés d’erreur. En général, l'algorithme FF est plus lent que la rétropropagation, et sa généralisation n'est pas idéale sur plusieurs problèmes de jouets étudiés dans cet article, donc dans les applications qui ne sont pas trop contraintes en puissance, il est peu probable qu'il remplace la rétropropagation. Pour les très grands modèles formés sur de très grands ensembles de données, ce type d'exploration continuera à utiliser la rétropropagation. L'algorithme FF peut être meilleur que la rétropropagation sous deux aspects, l'un est en tant que modèle d'apprentissage du cortex cérébral et l'autre est l'utilisation de matériel de simulation à très faible consommation sans recourir à l'apprentissage par renforcement. L'algorithme Forward-Forward est une procédure d'apprentissage multicouche gourmande inspirée des machines de Boltzmann et de l'estimation contrastive du bruit. L'idée est d'utiliser deux passes avant pour remplacer les passes avant et arrière de rétropropagation Ces deux passes avant fonctionnent l'une sur l'autre exactement de la même manière, mais sur des données différentes, les objectifs sont également inverses. . Parmi eux, la passe positive opère sur les données réelles et ajuste les poids pour augmenter la qualité dans chaque couche cachée ; la passe négative opère sur les données négatives et ajuste les poids pour réduire la qualité dans chaque couche cachée. Dans l'article, Hinton a démontré les performances de l'algorithme FF à travers des expériences sur CIFAR-10. CIFAR-10 contient 50 000 images d'entraînement de 32 x 32 pixels avec trois canaux de couleur par pixel. Chaque image possède donc 3072 dimensions. Les arrière-plans de ces images sont complexes et très variables, et ne peuvent pas être correctement modélisés avec des données de formation aussi limitées. De manière générale, lorsqu'un réseau entièrement connecté avec deux ou trois couches cachées est formé avec la méthode de rétropropagation, à moins que la couche cachée ne soit très petite, l'effet de surajustement est très faible, de sorte que presque tous les résultats rapportés concernent des réseaux convolutifs. Étant donné que FF est destiné à être utilisé dans des réseaux où le partage de poids n'est pas réalisable, il a été comparé à un réseau de rétropropagation, qui utilise des champs récepteurs locaux pour limiter le nombre de poids sans trop limiter le nombre d'unités cachées. Le but est simplement de montrer qu'avec un grand nombre d'unités cachées, FF fonctionne de manière comparable à la rétropropagation pour des images contenant des arrière-plans très variables. Le Tableau 1 montre les performances de test des réseaux entraînés avec rétropropagation et FF, qui utilisent tous deux la décroissance du poids pour réduire le surapprentissage. Pour plus de détails sur la recherche, veuillez vous référer à l'article original. Algorithme FF
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Écrit précédemment, nous discutons aujourd'hui de la manière dont la technologie d'apprentissage profond peut améliorer les performances du SLAM (localisation et cartographie simultanées) basé sur la vision dans des environnements complexes. En combinant des méthodes d'extraction de caractéristiques approfondies et de correspondance de profondeur, nous introduisons ici un système SLAM visuel hybride polyvalent conçu pour améliorer l'adaptation dans des scénarios difficiles tels que des conditions de faible luminosité, un éclairage dynamique, des zones faiblement texturées et une gigue importante. Notre système prend en charge plusieurs modes, notamment les configurations étendues monoculaire, stéréo, monoculaire-inertielle et stéréo-inertielle. En outre, il analyse également comment combiner le SLAM visuel avec des méthodes d’apprentissage profond pour inspirer d’autres recherches. Grâce à des expériences approfondies sur des ensembles de données publiques et des données auto-échantillonnées, nous démontrons la supériorité du SL-SLAM en termes de précision de positionnement et de robustesse du suivi.

Écrit ci-dessus et compréhension personnelle de l'auteur : À l'heure actuelle, dans l'ensemble du système de conduite autonome, le module de perception joue un rôle essentiel. Le véhicule autonome roulant sur la route ne peut obtenir des résultats de perception précis que via le module de perception en aval. dans le système de conduite autonome, prend des jugements et des décisions comportementales opportuns et corrects. Actuellement, les voitures dotées de fonctions de conduite autonome sont généralement équipées d'une variété de capteurs d'informations de données, notamment des capteurs de caméra à vision panoramique, des capteurs lidar et des capteurs radar à ondes millimétriques pour collecter des informations selon différentes modalités afin d'accomplir des tâches de perception précises. L'algorithme de perception BEV basé sur la vision pure est privilégié par l'industrie en raison de son faible coût matériel et de sa facilité de déploiement, et ses résultats peuvent être facilement appliqués à diverses tâches en aval.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Dans la vague actuelle de changements technologiques rapides, l'intelligence artificielle (IA), l'apprentissage automatique (ML) et l'apprentissage profond (DL) sont comme des étoiles brillantes, à la tête de la nouvelle vague des technologies de l'information. Ces trois mots apparaissent fréquemment dans diverses discussions de pointe et applications pratiques, mais pour de nombreux explorateurs novices dans ce domaine, leurs significations spécifiques et leurs connexions internes peuvent encore être entourées de mystère. Alors regardons d'abord cette photo. On constate qu’il existe une corrélation étroite et une relation progressive entre l’apprentissage profond, l’apprentissage automatique et l’intelligence artificielle. Le deep learning est un domaine spécifique du machine learning, et le machine learning

Près de 20 ans se sont écoulés depuis que le concept d'apprentissage profond a été proposé en 2006. L'apprentissage profond, en tant que révolution dans le domaine de l'intelligence artificielle, a donné naissance à de nombreux algorithmes influents. Alors, selon vous, quels sont les 10 meilleurs algorithmes pour l’apprentissage profond ? Voici les meilleurs algorithmes d’apprentissage profond, à mon avis. Ils occupent tous une position importante en termes d’innovation, de valeur d’application et d’influence. 1. Contexte du réseau neuronal profond (DNN) : Le réseau neuronal profond (DNN), également appelé perceptron multicouche, est l'algorithme d'apprentissage profond le plus courant lorsqu'il a été inventé pour la première fois, jusqu'à récemment en raison du goulot d'étranglement de la puissance de calcul. années, puissance de calcul, La percée est venue avec l'explosion des données. DNN est un modèle de réseau neuronal qui contient plusieurs couches cachées. Dans ce modèle, chaque couche transmet l'entrée à la couche suivante et

La couche inférieure de la fonction de tri C++ utilise le tri par fusion, sa complexité est O(nlogn) et propose différents choix d'algorithmes de tri, notamment le tri rapide, le tri par tas et le tri stable.

01Aperçu des perspectives Actuellement, il est difficile d'atteindre un équilibre approprié entre efficacité de détection et résultats de détection. Nous avons développé un algorithme YOLOv5 amélioré pour la détection de cibles dans des images de télédétection optique haute résolution, en utilisant des pyramides de caractéristiques multicouches, des stratégies de têtes de détection multiples et des modules d'attention hybrides pour améliorer l'effet du réseau de détection de cibles dans les images de télédétection optique. Selon l'ensemble de données SIMD, le mAP du nouvel algorithme est 2,2 % meilleur que YOLOv5 et 8,48 % meilleur que YOLOX, permettant ainsi d'obtenir un meilleur équilibre entre les résultats de détection et la vitesse. 02 Contexte et motivation Avec le développement rapide de la technologie de télédétection, les images de télédétection optique à haute résolution ont été utilisées pour décrire de nombreux objets à la surface de la Terre, notamment des avions, des voitures, des bâtiments, etc. Détection d'objets dans l'interprétation d'images de télédétection

La convergence de l’intelligence artificielle (IA) et des forces de l’ordre ouvre de nouvelles possibilités en matière de prévention et de détection de la criminalité. Les capacités prédictives de l’intelligence artificielle sont largement utilisées dans des systèmes tels que CrimeGPT (Crime Prediction Technology) pour prédire les activités criminelles. Cet article explore le potentiel de l’intelligence artificielle dans la prédiction de la criminalité, ses applications actuelles, les défis auxquels elle est confrontée et les éventuelles implications éthiques de cette technologie. Intelligence artificielle et prédiction de la criminalité : les bases CrimeGPT utilise des algorithmes d'apprentissage automatique pour analyser de grands ensembles de données, identifiant des modèles qui peuvent prédire où et quand les crimes sont susceptibles de se produire. Ces ensembles de données comprennent des statistiques historiques sur la criminalité, des informations démographiques, des indicateurs économiques, des tendances météorologiques, etc. En identifiant les tendances qui pourraient échapper aux analystes humains, l'intelligence artificielle peut donner du pouvoir aux forces de l'ordre.
