L'apprentissage automatique peut être utilisé pour résoudre un large éventail de problèmes. Mais il y a tellement de modèles différents parmi lesquels choisir qu’il peut être difficile de savoir lequel convient le mieux. Le résumé de cet article vous aidera à choisir le modèle de machine learning le plus adapté à vos besoins.
La première étape consiste à déterminer le problème que vous souhaitez résoudre : s'agit-il d'un problème de régression, de classification ou de clustering que vous souhaitez résoudre ? et décidez lequel choisir comme type de modèle.
Quel type de problème souhaitez-vous résoudre ?
Problème de classification : régression logistique, classificateur d'arbre de décision, classificateur de forêt aléatoire, machine à vecteurs de support (SVM), classificateur naïf de Bayes ou réseau de neurones.
Problème de clustering : clustering k-means, clustering hiérarchique ou DBSCAN.
Si vous disposez d'un petit ensemble de données, choisissez un modèle moins complexe, tel que la régression linéaire. Pour des ensembles de données plus volumineux, des modèles plus complexes tels que la forêt aléatoire ou l’apprentissage profond peuvent convenir.
Comment juger de la taille de l'ensemble de données :
data ont des résultats prédéterminés, contrairement aux données non étiquetées. Si les données sont étiquetées, des algorithmes d’apprentissage supervisé tels que la régression logistique ou les arbres de décision sont généralement utilisés. Les données non étiquetées nécessitent des algorithmes d'apprentissage non supervisés tels que les k-moyennes ou l'analyse en composantes principales (ACP).
Si vos fonctionnalités sont de type catégoriel, vous devrez peut-être utiliser des arbres de décision ou des Bayes naïfs. Pour les caractéristiques numériques, la régression linéaire ou les machines à vecteurs de support (SVM) peuvent être plus adaptées.
Si vous traitez des données séquentielles, telles que des séries temporelles ou un langage naturel, vous devrez peut-être utiliser des réseaux de neurones récurrents (rnn) ou de la mémoire à long terme (LSTM), des transformateurs, etc.
Il existe de nombreuses valeurs manquantes qui peuvent être utilisées : arbres de décision, forêts aléatoires, clustering k-means. Si les valeurs manquantes ne sont pas correctes, vous pouvez envisager la régression linéaire, la régression logistique, la machine à vecteurs de support et le réseau neuronal.
Certains modèles d'apprentissage automatique sont plus faciles à expliquer que d'autres. Si vous avez besoin d'expliquer les résultats du modèle, vous pouvez choisir des modèles tels que des arbres de décision ou une régression logistique. Si la précision est plus critique, des modèles plus complexes tels que la forêt aléatoire ou l’apprentissage profond peuvent être plus adaptés.
Si vous avez affaire à des classes déséquilibrées, vous souhaiterez peut-être utiliser des modèles tels que des forêts aléatoires, des machines vectorielles de support ou des réseaux de neurones pour résoudre ce problème.
Gestion des valeurs manquantes dans vos données
Si vous avez des valeurs manquantes dans votre ensemble de données, vous souhaiterez peut-être envisager des techniques d'imputation ou des modèles capables de gérer les valeurs manquantes, tels que les K-voisins les plus proches (KNN) ou les arbres de décision. .
S'il peut exister des relations non linéaires entre les variables, des modèles plus complexes tels que des réseaux de neurones ou des machines à vecteurs de support doivent être utilisés.
Si vous souhaitez considérer le compromis entre vitesse et précision, les modèles plus complexes peuvent être plus lents, mais ils peuvent également offrir une plus grande précision.
Si vous souhaitez traiter des données de grande dimension ou des données bruyantes, vous devrez peut-être utiliser des techniques de réduction de dimensionnalité (telles que PCA) ou des modèles capables de gérer le bruit (tels que KNN ou arbres de décision).
Si vous avez besoin de prédiction en temps réel, vous devez choisir un modèle tel qu'un arbre de décision ou une machine à vecteurs de support.
Si les données contiennent de nombreuses valeurs aberrantes, vous pouvez choisir un modèle robuste comme svm ou random forest.
Le but ultime du modèle est de déployer en ligne, la difficulté de déploiement est donc la considération finale :
Certains modèles simples, tels que la régression linéaire, la régression logistique, l'arbre de décision, etc., peuvent être relativement facilement déployés Déployés dans des environnements de production car ils ont une petite taille de modèle, une faible complexité et une faible surcharge de calcul. Sur des ensembles de données à grande échelle, de grande dimension, non linéaires et autres ensembles de données complexes, les performances de ces modèles peuvent être limitées, nécessitant des modèles plus avancés, tels que des réseaux neuronaux, des machines à vecteurs de support, etc. Par exemple, dans des domaines tels que la reconnaissance d'images et de parole, les ensembles de données peuvent nécessiter un traitement et un prétraitement approfondis, ce qui peut rendre le déploiement du modèle plus difficile.
Choisir le bon modèle d'apprentissage automatique peut être une tâche difficile qui nécessite de faire des compromis en fonction du problème spécifique, des données, de la vitesse, de l'interprétabilité, du déploiement, etc. et de choisir l'algorithme le plus approprié en fonction des besoins. En suivant ces directives, vous pouvez vous assurer que votre modèle d'apprentissage automatique est bien adapté à votre cas d'utilisation spécifique et peut vous fournir les informations et les prédictions dont vous avez besoin.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!