Le processus et le thread sont des concepts de base du système d'exploitation, mais ils sont relativement abstraits et difficiles à maîtriser. Concernant le multi-processus et le multi-threading, la phrase la plus classique dans les manuels scolaires est « Un processus est la plus petite unité d'allocation de ressources, et un thread est la plus petite unité de planification du CPU ». Un thread est un flux de contrôle séquentiel unique dans un programme. Unité d'exécution relativement indépendante et planifiable au sein d'un processus. Il s'agit de l'unité de base permettant au système de planifier et d'allouer indépendamment le processeur. Il fait référence à l'unité de planification d'un programme en cours d'exécution. L’exécution de plusieurs threads en même temps pour effectuer différentes tâches dans un seul programme est appelée multithreading.
Un processus est l'unité de base de l'allocation des ressources. Toutes les ressources liées au processus sont enregistrées dans le PCB du bloc de contrôle du processus. Pour indiquer que le processus possède ces ressources ou les utilise. De plus, le processus est également l’unité de planification qui préempte le processeur et dispose d’un espace d’adressage virtuel complet. Lorsque des processus sont planifiés, différents processus disposent d'espaces d'adressage virtuels différents et différents threads au sein d'un même processus partagent le même espace d'adressage.
Correspondant à un processus, un thread n'a rien à voir avec l'allocation des ressources. Il appartient à un certain processus et partage les ressources du processus avec d'autres threads du processus. Un thread se compose uniquement des registres de pile pertinents (pile système ou pile utilisateur) et de la table de contrôle de thread TCB. Les registres peuvent être utilisés pour stocker des variables locales dans un thread, mais ne peuvent pas stocker de variables liées à d'autres threads.
Habituellement, un processus peut contenir plusieurs threads, qui peuvent utiliser les ressources possédées par le processus. Dans les systèmes d'exploitation qui introduisent des threads, les processus sont généralement considérés comme l'unité de base de l'allocation des ressources, et les threads sont considérés comme l'unité de base du fonctionnement indépendant et de la planification indépendante.
Étant donné que les threads sont plus petits que les processus et ne possèdent fondamentalement pas de ressources système, la surcharge nécessaire à leur planification sera beaucoup plus petite, ce qui peut augmenter plus efficacement le degré d'exécution simultanée entre plusieurs programmes du système, améliorant ainsi considérablement l'utilisation des ressources système et débit.
Ainsi, les systèmes d'exploitation à usage général lancés ces dernières années ont introduit des threads pour améliorer encore la concurrence du système et le considèrent comme un indicateur important des systèmes d'exploitation modernes.
La différence entre les threads et les processus peut être résumée par les quatre points suivants :
Dimensions de comparaison |
Multi-processus | Multi-threading |
Résumé |
Partage et synchronisation des données Le partage de données est complexe, la synchronisation est simple beaucoup de mémoire, commutation complexe, utilisation du processeur Faible |
Occupe moins de mémoire, commutation simple, utilisation élevée du processeur | Les threads dominent | |
Complexe, lent | Simple, rapide | Les threads dominent | |
Programmation simple et débogage simple | Programmation complexe et débogage complexe | Les processus dominent | Fiabilité |
Les processus ne s'influenceront pas les uns les autres | Si un thread raccroche, l'ensemble du processus raccrochera |
Dominance du processus |
|
Distribué |
Convient aux multicœurs et multi-machines, facile à étendre à plusieurs machines | Processus Dominate multicœurs appropriés |
En résumé, les processus et les threads peuvent également être comparés aux trains et aux wagons :
Global Interpreter Lock (anglais : Global Interpreter Lock, abréviation GIL) n'est pas une fonctionnalité de Python, elle est implémentée. Un concept introduit par l'analyseur Python (CPython). Parce que CPython est l'environnement d'exécution Python par défaut dans la plupart des environnements. Par conséquent, pour beaucoup de gens, CPython est Python, et ils tiennent pour acquis que GIL est un défaut du langage Python. Alors, qu'est-ce que le GIL dans l'implémentation de CPython ? Jetons un coup d'œil à l'explication officielle :
Le mécanisme utilisé par l'interpréteur CPython pour garantir qu'un seul thread exécute le bytecode Python à la fois. Cela simplifie l'implémentation de CPython en créant le modèle objet (y compris les types intégrés critiques tels que). dict) implicitement protégé contre les accès concurrents. Le verrouillage de l'intégralité de l'interpréteur facilite le multithread de l'interpréteur, au détriment d'une grande partie du parallélisme offert par les machines multiprocesseurs.
L'exécution du code Python est effectuée par le virtuel Python. machine (également appelée boucle principale de l'interpréteur, version CPython) à contrôler, Python a été conçu à l'origine pour n'avoir qu'un seul thread s'exécutant dans la boucle principale de l'interpréteur en même temps, c'est-à-dire qu'à tout moment, un seul thread s'exécute dans l'interpréteur. L'accès à la machine virtuelle Python est contrôlé par le Global Interpreter Lock (GIL), qui garantit qu'un seul thread est en cours d'exécution à la fois.
Quels sont les avantages du GIL ? En termes simples, il est plus rapide dans une situation à thread unique et plus pratique lorsqu'il est combiné avec la bibliothèque C, et il n'est pas nécessaire de prendre en compte les problèmes de sécurité des threads. C'était également le scénario d'application le plus courant et l'avantage des premiers Python. De plus, la conception de GIL simplifie la mise en œuvre de CPython, rendant le modèle objet, y compris les types intégrés clés tels que les dictionnaires, implicitement accessibles simultanément. Le verrouillage de l'interpréteur global facilite la mise en œuvre du support multithread, mais il fait également perdre les capacités de calcul parallèle de l'hôte multiprocesseur.
Dans un environnement multithread, la machine virtuelle Python s'exécute comme suit :
Avant Python 3.2, la logique de publication de GIL était que le thread actuel rencontrait une opération IO ou le nombre de ticks a atteint 100 (les ticks peuvent être considérés comme un compteur de Python lui-même, spécialement utilisé pour GIL, et est réinitialisé à zéro après chaque version. Ce nombre peut être ajusté via sys.setcheckinterval), et libéré. Parce que le thread à forte intensité de calcul demandera immédiatement le GIL après avoir publié le GIL, et généralement il a réacquis le GIL avant que les autres threads n'aient terminé la planification. Cela permettra au thread à forte intensité de calcul d'obtenir le GIL dans un délai très court. GIL sera occupé pendant longtemps, même jusqu'à la fin de l'exécution du thread.
Python 3.2 commence à utiliser le nouveau GIL. La nouvelle implémentation de GIL utilise un délai d'attente fixe pour demander au thread actuel d'abandonner le verrou global. Lorsque le thread actuel détient ce verrou et que d'autres threads demandent ce verrou, le thread actuel sera obligé de libérer le verrou après 5 millisecondes. Cette amélioration améliore la situation où un seul thread occupe le GIL pendant une longue période dans le cas d'un seul cœur.
Sur un processeur monocœur, des centaines de vérifications d'intervalle entraîneront un changement de thread. Sur les processeurs multicœurs, il y a de graves problèmes de thread. Chaque fois que le verrou GIL est libéré, les threads se disputent les verrous et changent de thread, ce qui consomme des ressources. Avec plusieurs threads sous un seul cœur, chaque fois que le GIL est libéré, le thread réveillé peut obtenir le verrou GIL, afin qu'il puisse s'exécuter de manière transparente. Cependant, en mode multicœur, une fois que CPU0 a publié le GIL, les threads sur d'autres processeurs seront en concurrence. mais le GIL peut Il est immédiatement obtenu par CPU0, provoquant le réveil des threads réveillés sur plusieurs autres CPU et l'attente de l'heure de commutation avant d'entrer dans l'état à planifier. Cela entraînera une turbulence des threads, ce qui entraînera une efficacité moindre.
De plus, à partir du mécanisme d'implémentation ci-dessus, on peut déduire que le multithreading de Python est plus convivial pour le code gourmand en E/S que le code gourmand en CPU.
Contre-mesures contre GIL :
Le package de threading de Python utilise principalement le développement multi-thread, mais en raison de l'existence de GIL, le multi-threading en Python n'est pas vraiment du multi-threading. Pour utiliser pleinement les ressources d'un processeur multicœur, vous devez utiliser plusieurs processus dans la plupart des cas. Le package multitraitement a été introduit dans Python 2.6, qui réplique complètement un ensemble d'interfaces fournies par threading pour faciliter la migration. La seule différence est qu'il utilise plusieurs processus au lieu de plusieurs threads. Chaque processus possède son propre GIL indépendant, il n'y aura donc aucun conflit de GIL entre les processus.
Avec ce multitraitement, vous pouvez facilement terminer la conversion d'un processus unique à une exécution simultanée. Le multitraitement prend en charge les sous-processus, la communication et le partage de données, effectue différentes formes de synchronisation et fournit des composants tels que Processus, Queue, Pipe et Lock.
En plus de gérer le GIL de Python, une autre raison du multitraitement est l'incohérence entre le système d'exploitation Windows et le système Linux/Unix.
Le système d'exploitation Unix/Linux fournit un appel système fork(), ce qui est très spécial. Les fonctions ordinaires sont appelées une fois et renvoient une fois, mais fork() est appelée une fois et renvoie deux fois, car le système d'exploitation copie automatiquement le processus actuel (processus parent) (processus enfant), puis le copie respectivement dans le processus parent et le processus enfant. . retour. Le processus enfant renvoie toujours 0 et le processus parent renvoie l'ID du processus enfant. La raison en est qu'un processus parent peut débourser de nombreux processus enfants, le processus parent doit donc enregistrer l'ID de chaque processus enfant, et le processus enfant n'a besoin que d'appeler getpid() pour obtenir l'ID du processus parent.
Le module os de Python encapsule les appels système courants, y compris fork, qui peuvent facilement créer des sous-processus dans les programmes Python :
import os print('Process (%s) start...' % os.getpid()) # Only works on Unix/Linux/Mac: pid = os.fork() if pid == 0: print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())) else: print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
Les résultats d'exécution du code ci-dessus sous Linux, Unix et Mac sont :
Process (876) start... I (876) just created a child process (877). I am child process (877) and my parent is 876.
Avec l'appel Fork, lorsque un processus reçoit une nouvelle tâche, il peut copier un processus enfant pour gérer la nouvelle tâche. Sur un serveur Apache commun, le processus parent écoute sur le port. Chaque fois qu'il y a une nouvelle requête http, le processus enfant est bifurqué pour la traiter. requête http.
Étant donné que Windows n'a pas d'appel fork, le code ci-dessus ne peut pas s'exécuter sous Windows. Étant donné que Python est multiplateforme, il devrait naturellement fournir une prise en charge multi-processus multiplateforme. Le module multitraitement est une version multiplateforme du module multiprocessus. Le module multitraitement encapsule l'appel fork() afin que nous n'ayons pas besoin de prêter attention aux détails de fork(). Étant donné que Windows n'a pas d'appel fork, le multitraitement doit « simuler » l'effet du fork.
Module de création de processus de gestion :
Module de sous-processus de synchronisation :
Connect Apprenons à utiliser chaque composant et fonction ensemble
Le module multitraitement fournit une classe Process pour représenter un objet de processus
En multitraitement, chaque processus est représenté par une classe Process
Méthode de construction : Process([group [, target. [, nom [, args [, kwargs]]]]])
实例方法:
属性介绍:
使用示例:(注意:在windows中Process()必须放到if name == ‘main’:下)
from multiprocessing import Process import os def run_proc(name): print('Run child process %s (%s)...' % (name, os.getpid())) if __name__=='__main__': print('Parent process %s.' % os.getpid()) p = Process(target=run_proc, args=('test',)) print('Child process will start.') p.start() p.join() print('Child process end.')
Pool类用于需要执行的目标很多,而手动限制进程数量又太繁琐时,如果目标少且不用控制进程数量则可以用Process类。Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,就重用进程池中的进程。
构造方法:Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])
实例方法:
方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法:
<span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);"># -*- coding:utf-8 -*-</span><br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">Queue(用于进程通信,资源共享)</span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);"># Pool+map</span><br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">from</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">multiprocessing</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">import</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">Pool</span><br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">def</span> <span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">test</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span>):<br><span style="color: rgb(111, 66, 193); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">print</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span>)<br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">if</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">__name__</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">==</span> <span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">"__main__"</span>:<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">lists</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">=</span> <span style="color: rgb(111, 66, 193); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">range</span>(<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">100</span>)<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">=</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">Pool</span>(<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">8</span>)<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span>.<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">map</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">test</span>, <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">lists</span>)<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span>.<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">close</span>()<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span>.<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">join</span>()<br>
<span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);"># -*- coding:utf-8 -*-</span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);"># 异步进程池(非阻塞)</span><br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">from</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">multiprocessing</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">import</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">Pool</span><br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">def</span> <span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">test</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span>):<br><span style="color: rgb(111, 66, 193); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">print</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span>)<br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">if</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">__name__</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">==</span> <span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">"__main__"</span>:<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">=</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">Pool</span>(<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">8</span>)<br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">for</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">in</span> <span style="color: rgb(111, 66, 193); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">range</span>(<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">100</span>):<br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">'''</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">For循环中执行步骤:</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">(1)循环遍历,将100个子进程添加到进程池(相对父进程会阻塞)</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">(2)每次执行8个子进程,等一个子进程执行完后,立马启动新的子进程。(相对父进程不阻塞)</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">apply_async为异步进程池写法。异步指的是启动子进程的过程,与父进程本身的执行(print)是异步的,而For循环中往进程池添加子进程的过程,与父进程本身的执行却是同步的。</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">'''</span><br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span>.<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">apply_async</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">test</span>, <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">args</span><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">=</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span>,))<span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);"># 维持执行的进程总数为8,当一个进程执行完后启动一个新进程.</span><br><span style="color: rgb(111, 66, 193); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">print</span>(<span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">"test"</span>)<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span>.<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">close</span>()<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span>.<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">join</span>()<br>
<span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);"># -*- coding:utf-8 -*-</span><br><span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);"># 异步进程池(非阻塞)</span><br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">from</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">multiprocessing</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">import</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">Pool</span><br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">def</span> <span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">test</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span>):<br><span style="color: rgb(111, 66, 193); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">print</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span>)<br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">if</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">__name__</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">==</span> <span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">"__main__"</span>:<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">=</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">Pool</span>(<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">8</span>)<br><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">for</span> <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span> <span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">in</span> <span style="color: rgb(111, 66, 193); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">range</span>(<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">100</span>):<br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">'''</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">实际测试发现,for循环内部执行步骤:</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">(1)遍历100个可迭代对象,往进程池放一个子进程</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">(2)执行这个子进程,等子进程执行完毕,再往进程池放一个子进程,再执行。(同时只执行一个子进程)</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">for循环执行完毕,再执行print函数。</span><br><span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">'''</span><br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span>.<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">apply</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">test</span>, <span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">args</span><span style="color: rgb(215, 58, 73); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">=</span>(<span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">i</span>,))<span style="color: rgb(106, 115, 125); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);"># 维持执行的进程总数为8,当一个进程执行完后启动一个新进程.</span><br><span style="color: rgb(111, 66, 193); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">print</span>(<span style="color: rgb(102, 153, 0); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">"test"</span>)<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span>.<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">close</span>()<br><span style="color: rgb(89, 89, 89); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">pool</span>.<span style="color: rgb(0, 92, 197); margin: 0px; padding: 0px; background: none 0% 0% / auto repeat scroll padding-box border-box rgba(0, 0, 0, 0);">join</span>()<br>
在使用多进程的过程中,最好不要使用共享资源。普通的全局变量是不能被子进程所共享的,只有通过Multiprocessing组件构造的数据结构可以被共享。
Queue是用来创建进程间资源共享的队列的类,使用Queue可以达到多进程间数据传递的功能(缺点:只适用Process类,不能在Pool进程池中使用)。
构造方法:Queue([maxsize])
实例方法:
使用示例:
from multiprocessing import Process, Queue import os, time, random def write(q): print('Process to write: %s' % os.getpid()) for value in ['A', 'B', 'C']: print('Put %s to queue...' % value) q.put(value) time.sleep(random.random()) def read(q): print('Process to read: %s' % os.getpid()) while True: value = q.get(True) print('Get %s from queue.' % value) if __name__ == "__main__": q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) pw.start() pr.start() pw.join()# 等待pw结束 pr.terminate()# pr进程里是死循环,无法等待其结束,只能强行终止
JoinableQueue就像是一个Queue对象,但队列允许项目的使用者通知生成者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。
构造方法:JoinableQueue([maxsize])
实例方法
JoinableQueue的实例p除了与Queue对象相同的方法之外还具有:
使用示例:
# -*- coding:utf-8 -*- from multiprocessing import Process, JoinableQueue import time, random def consumer(q): while True: res = q.get() print('消费者拿到了 %s' % res) q.task_done() def producer(seq, q): for item in seq: time.sleep(random.randrange(1,2)) q.put(item) print('生产者做好了 %s' % item) q.join() if __name__ == "__main__": q = JoinableQueue() seq = ('产品%s' % i for i in range(5)) p = Process(target=consumer, args=(q,)) p.daemon = True# 设置为守护进程,在主线程停止时p也停止,但是不用担心,producer内调用q.join保证了consumer已经处理完队列中的所有元素 p.start() producer(seq, q) print('主线程')
multiprocessing 中Value和Array的实现原理都是在共享内存中创建ctypes()对象来达到共享数据的目的,两者实现方法大同小异,只是选用不同的ctypes数据类型而已。
构造方法:Value((typecode_or_type, args[, lock])
typecode_or_type支持的类型:
| Type code | C Type | Python Type | Minimum size in bytes | | --------- | ------------------ | ----------------- | --------------------- | | `'b'` | signed char| int | 1 | | `'B'` | unsigned char| int | 1 | | `'u'` | Py_UNICODE | Unicode character | 2 | | `'h'` | signed short | int | 2 | | `'H'` | unsigned short | int | 2 | | `'i'` | signed int | int | 2 | | `'I'` | unsigned int | int | 2 | | `'l'` | signed long| int | 4 | | `'L'` | unsigned long| int | 4 | | `'q'` | signed long long | int | 8 | | `'Q'` | unsigned long long | int | 8 | | `'f'` | float| float | 4 | | `'d'` | double | float | 8 |
参考地址:https://docs.python.org/3/library/array.html
构造方法:Array(typecode_or_type, size_or_initializer, **kwds[, lock])
使用示例:
import multiprocessing def f(n, a): n.value = 3.14 a[0] = 5 if __name__ == '__main__': num = multiprocessing.Value('d', 0.0) arr = multiprocessing.Array('i', range(10)) p = multiprocessing.Process(target=f, args=(num, arr)) p.start() p.join() print(num.value) print(arr[:])
注意:Value和Array只适用于Process类。
多进程还有一种数据传递方式叫管道原理和 Queue相同。Pipe可以在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道。
构造方法:Pipe([duplex])
实例方法:
使用示例:
from multiprocessing import Process, Pipe import time # 子进程执行方法 def f(Subconn): time.sleep(1) Subconn.send("吃了吗") print("来自父亲的问候:", Subconn.recv()) Subconn.close() if __name__ == "__main__": parent_conn, child_conn = Pipe()# 创建管道两端 p = Process(target=f, args=(child_conn,))# 创建子进程 p.start() print("来自儿子的问候:", parent_conn.recv()) parent_conn.send("嗯")
Manager()返回的manager对象控制了一个server进程,此进程包含的python对象可以被其他的进程通过proxies来访问。从而达到多进程间数据通信且安全。Manager模块常与Pool模块一起使用。
Manager支持的类型有list,dict,Namespace,Lock,RLock,Semaphore,BoundedSemaphore,Condition,Event,Queue,Value和Array。
管理器是独立运行的子进程,其中存在真实的对象,并以服务器的形式运行,其他进程通过使用代理访问共享对象,这些代理作为客户端运行。Manager()是BaseManager的子类,返回一个启动的SyncManager()实例,可用于创建共享对象并返回访问这些共享对象的代理。
BaseManager,创建管理器服务器的基类
构造方法:BaseManager([address[, authkey]])
实例方法:
实例属性:
SyncManager,以下类型均不是进程安全的,需要加锁..
实例方法:
使用示例:
import multiprocessing def f(x, arr, l, d, n): x.value = 3.14 arr[0] = 5 l.append('Hello') d[1] = 2 n.a = 10 if __name__ == '__main__': server = multiprocessing.Manager() x = server.Value('d', 0.0) arr = server.Array('i', range(10)) l = server.list() # 子进程执行方法 def f(Subconn): time.sleep(1) Subconn.send("吃了吗") print("来自父亲的问候:", Subconn.recv()) print(x.value) print(arr) print(l) print(d) print(n)
Lock锁的作用是当多个进程需要访问共享资源的时候,避免访问的冲突。加锁保证了多个进程修改同一块数据时,同一时间只能有一个修改,即串行的修改,牺牲了速度但保证了数据安全。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。
构造方法:Lock()
实例方法:
使用示例:
from multiprocessing import Process, Lock def l(lock, num): lock.acquire() print("Hello Num: %s" % (num)) lock.release() if __name__ == '__main__': lock = Lock()# 这个一定要定义为全局 for num in range(20): Process(target=l, args=(lock, num)).start()
RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。
构造方法:RLock()
实例方法:
信号量是一个更高级的锁机制。信号量内部有一个计数器而不像锁对象内部有锁标识,而且只有当占用信号量的线程数超过信号量时线程才阻塞。这允许了多个线程可以同时访问相同的代码区。比如厕所有3个坑,那最多只允许3个人上厕所,后面的人只能等里面有人出来了才能再进去,如果指定信号量为3,那么来一个人获得一把锁,计数加1,当计数等于3时,后面的人均需要等待。一旦释放,就有人可以获得一把锁。
构造方法:Semaphore([value])
实例方法:
使用示例:
from multiprocessing import Process, Semaphore import time, random def go_wc(sem, user): sem.acquire() print('%s 占到一个茅坑' % user) time.sleep(random.randint(0, 3)) sem.release() print(user, 'OK') if __name__ == '__main__': sem = Semaphore(2) p_l = [] for i in range(5): p = Process(target=go_wc, args=(sem, 'user%s' % i,)) p.start() p_l.append(p) for i in p_l: i.join()
可以把Condition理解为一把高级的锁,它提供了比Lock, RLock更高级的功能,允许我们能够控制复杂的线程同步问题。Condition在内部维护一个锁对象(默认是RLock),可以在创建Condigtion对象的时候把琐对象作为参数传入。Condition也提供了acquire, release方法,其含义与锁的acquire, release方法一致,其实它只是简单的调用内部锁对象的对应的方法而已。Condition还提供了其他的一些方法。
构造方法:Condition([lock/rlock])
实例方法:
使用示例:
import multiprocessing import time def stage_1(cond): """perform first stage of work, then notify stage_2 to continue """ name = multiprocessing.current_process().name print('Starting', name) with cond: print('{} done and ready for stage 2'.format(name)) cond.notify_all() def stage_2(cond): """wait for the condition telling us stage_1 is done""" name = multiprocessing.current_process().name print('Starting', name) with cond: cond.wait() print('{} running'.format(name)) if __name__ == '__main__': condition = multiprocessing.Condition() s1 = multiprocessing.Process(name='s1', target=stage_1, args=(condition,)) s2_clients = [ multiprocessing.Process( name='stage_2[{}]'.format(i), target=stage_2, args=(condition,), ) for i in range(1, 3) ] for c in s2_clients: c.start() time.sleep(1) s1.start() s1.join() for c in s2_clients: c.join()
Event内部包含了一个标志位,初始的时候为false。可以使用set()来将其设置为true;或者使用clear()将其从新设置为false;可以使用is_set()来检查标志位的状态;另一个最重要的函数就是wait(timeout=None),用来阻塞当前线程,直到event的内部标志位被设置为true或者timeout超时。如果内部标志位为true则wait()函数理解返回。
使用示例:
import multiprocessing import time def wait_for_event(e): """Wait for the event to be set before doing anything""" print('wait_for_event: starting') e.wait() print('wait_for_event: e.is_set()->', e.is_set()) def wait_for_event_timeout(e, t): """Wait t seconds and then timeout""" print('wait_for_event_timeout: starting') e.wait(t) print('wait_for_event_timeout: e.is_set()->', e.is_set()) if __name__ == '__main__': e = multiprocessing.Event() w1 = multiprocessing.Process( name='block', target=wait_for_event, args=(e,), ) w1.start() w2 = multiprocessing.Process( name='nonblock', target=wait_for_event_timeout, args=(e, 2), ) w2.start() print('main: waiting before calling Event.set()') time.sleep(3) e.set() print('main: event is set')
multiprocessing.dummy 模块与 multiprocessing 模块的区别:dummy 模块是多线程,而 multiprocessing 是多进程, api 都是通用的。所有可以很方便将代码在多线程和多进程之间切换。multiprocessing.dummy通常在IO场景可以尝试使用,比如使用如下方式引入线程池。
from multiprocessing.dummy import Pool as ThreadPool
multiprocessing.dummy与早期的threading,不同的点好像是在多多核CPU下,只绑定了一个核心(具体未考证)。
参考文档:
Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码。从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的更高级的抽象,对编写线程池/进程池提供了直接的支持。concurrent.futures基础模块是executor和future。
Executor是一个抽象类,它不能被直接使用。它为具体的异步执行定义了一些基本的方法。ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码。
ThreadPoolExecutor类是Executor子类,使用线程池执行异步调用。
class concurrent.futures.ThreadPoolExecutor(max_workers)
使用max_workers数目的线程池执行异步调用。
ThreadPoolExecutor类是Executor子类,使用进程池执行异步调用。
class concurrent.futures.ProcessPoolExecutor(max_workers=None)
使用max_workers数目的进程池执行异步调用,如果max_workers为None则使用机器的处理器数目(如4核机器max_worker配置为None时,则使用4个进程进行异步并发)。
Executor中定义了submit()方法,这个方法的作用是提交一个可执行的回调task,并返回一个future实例。future对象代表的就是给定的调用。
Executor.submit(fn, *args, **kwargs)
使用示例:
from concurrent import futures def test(num): import time return time.ctime(), num with futures.ThreadPoolExecutor(max_workers=1) as executor: future = executor.submit(test, 1) print(future.result())
除了submit,Exectuor还为我们提供了map方法,这个方法返回一个map(func, *iterables)迭代器,迭代器中的回调执行返回的结果有序的。
Executor.map(func, *iterables, timeout=None)
使用示例:
from concurrent import futures def test(num): import time return time.ctime(), num data = [1, 2, 3] with futures.ThreadPoolExecutor(max_workers=1) as executor: for future in executor.map(test, data): print(future)
释放系统资源,在Executor.submit()或 Executor.map()等异步操作后调用。使用with语句可以避免显式调用此方法。
Executor.shutdown(wait=True)
Future可以理解为一个在未来完成的操作,这是异步编程的基础。通常情况下,我们执行io操作,访问url时(如下)在等待结果返回之前会产生阻塞,cpu不能做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。
Future类封装了可调用的异步执行。Future 实例通过 Executor.submit()方法创建。
使用示例:
from concurrent.futures import ThreadPoolExecutor, wait, as_completed from time import sleep from random import randint def return_after_5_secs(num): sleep(randint(1, 5)) return "Return of {}".format(num) pool = ThreadPoolExecutor(5) futures = [] for x in range(5): futures.append(pool.submit(return_after_5_secs, x)) print(1) for x in as_completed(futures): print(x.result()) print(2)
参考链接:
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!