Table des matières
Les consommateurs prennent des mesures pour protéger leurs données" >Les consommateurs prennent des mesures pour protéger leurs données
Maison Périphériques technologiques IA Une enquête révèle : les consommateurs sont en conflit sur l'utilisation des données de l'intelligence artificielle

Une enquête révèle : les consommateurs sont en conflit sur l'utilisation des données de l'intelligence artificielle

Apr 18, 2023 pm 02:01 PM
人工智能 数据 消费者

Les consommateurs soutiennent l'intelligence artificielle mais s'inquiètent de la manière dont les entreprises utilisent la technologie, avec plus de la moitié des personnes interrogées déclarant avoir perdu confiance dans leur organisation en raison de l'utilisation de l'intelligence artificielle, selon une nouvelle enquête de Cisco.

Une enquête révèle : les consommateurs sont en conflit sur l'utilisation des données de l'intelligence artificielle

Les données ont été révélées dans l'enquête Cisco sur la confidentialité des consommateurs 2022, un examen mondial annuel des perceptions et des comportements des consommateurs en matière de confidentialité des données. L’enquête de cette année souligne la nécessité d’une plus grande transparence, les consommateurs affirmant que leur priorité absolue est que les organisations soient plus transparentes sur la manière dont elles utilisent leurs données personnelles.

L'enquête Cisco montre également que si les consommateurs soutiennent l'IA (54 % sont prêts à partager leurs données anonymisées pour améliorer les produits d'IA), 65 % ont perdu confiance dans les organisations en raison de l'utilisation de l'IA.

« Les entreprises doivent expliquer leurs pratiques en matière de données en termes simples et les rendre facilement accessibles afin que les clients et les utilisateurs puissent comprendre ce qui arrive à leurs données. Il ne s'agit pas seulement d'une exigence légale ; la confiance en dépend », vice-président et chef de Cisco. » a déclaré le responsable de la protection de la vie privée Harvey Jang.

Cette année, 81 % des personnes interrogées ont convenu que la façon dont une organisation gère les données personnelles démontre la façon dont elle perçoit et respecte ses clients, le pourcentage le plus élevé depuis que Cisco a commencé à les suivre en 2019.

Les consommateurs prennent des mesures pour protéger leurs données

Cisco a également constaté que certains consommateurs prennent des mesures pour mieux protéger leurs données en réponse à l'érosion de la confiance dans les organisations. Au total, 76 % ont déclaré qu'ils n'achèteraient pas auprès d'une entreprise à laquelle ils n'avaient pas confiance avec leurs données, 37 % ont déclaré qu'ils avaient changé de fournisseur avec des pratiques de confidentialité des données et 53 % ont déclaré qu'ils géreraient leurs paramètres de cookies avant d'accepter les conditions. des personnes possédant des appareils d'écoute à domicile déclarent les éteindre régulièrement pour protéger leur vie privée.

Cisco affirme que l'évolution rapide de la technologie rend difficile pour les consommateurs de faire confiance aux données de l'entreprise, mais la plupart des personnes interrogées affirment que les avantages potentiels de l'IA l'emportent sur les risques si une désidentification appropriée est en place – 54 % ont déclaré qu'ils partageraient des données personnelles anonymisées avec contribuer à améliorer les produits et les décisions basés sur l’IA.

Mais il existe un décalage entre les entreprises et les consommateurs : alors que 87 % des organisations estiment avoir mis en place des processus pour garantir que les décisions automatisées sont exécutées conformément aux attentes des clients, 60 % des personnes interrogées ne sont pas sûres de la manière dont les organisations utilisent les données personnelles pour l'IA. Cisco a déclaré que les organisations peuvent donner aux consommateurs la possibilité de se désinscrire des applications d'IA et d'expliquer le fonctionnement de leurs applications d'IA.

Cisco a constaté que plus de la moitié des personnes interrogées ont déclaré que les gouvernements nationaux ou locaux devraient jouer un rôle primordial dans la protection des données des consommateurs, car de nombreux consommateurs ne font pas confiance aux entreprises privées pour qu'elles soient tenues responsables de leurs données personnelles sans surveillance.

"Nous espérons que les résultats de cette enquête inciteront les organisations à continuer de donner la priorité aux besoins de leurs clients en matière de sécurité, de confidentialité et de transparence", a déclaré Brad Arkin, vice-président senior et directeur de la sécurité et de la confiance chez Cisco

.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Jun 28, 2024 am 03:51 AM

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Jun 10, 2024 am 11:08 AM

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Jun 11, 2024 pm 03:57 PM

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Sept questions d'entretien technique Cool GenAI et LLM Sept questions d'entretien technique Cool GenAI et LLM Jun 07, 2024 am 10:06 AM

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Les startups d'IA ont collectivement transféré leurs emplois vers OpenAI, et l'équipe de sécurité s'est regroupée après le départ d'Ilya ! Les startups d'IA ont collectivement transféré leurs emplois vers OpenAI, et l'équipe de sécurité s'est regroupée après le départ d'Ilya ! Jun 08, 2024 pm 01:00 PM

" sept péchés capitaux" » Dissiper les rumeurs : selon des informations divulguées et des documents obtenus par Vox, la haute direction d'OpenAI, y compris Altman, était bien au courant de ces dispositions de récupération de capitaux propres et les a approuvées. De plus, OpenAI est confronté à un problème grave et urgent : la sécurité de l’IA. Les récents départs de cinq employés liés à la sécurité, dont deux de ses employés les plus en vue, et la dissolution de l'équipe « Super Alignment » ont une nouvelle fois mis les enjeux de sécurité d'OpenAI sur le devant de la scène. Le magazine Fortune a rapporté qu'OpenA

Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Jul 25, 2024 am 06:42 AM

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Jul 17, 2024 pm 06:37 PM

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

See all articles