Maison > Java > javaDidacticiel > le corps du texte

Quel est le mécanisme de gestion des exceptions dans les threads Java ?

WBOY
Libérer: 2023-04-21 21:37:06
avant
1230 Les gens l'ont consulté

    Préface

    Démarrer un programme Java consiste essentiellement à exécuter la méthode principale d'une classe Java. Écrivons un programme en boucle infinie, exécutons-le, puis exécutons jvisualvm pour observer jvisualvm进行观察

    Quel est le mécanisme de gestion des exceptions dans les threads Java ?

    可以看到这个Java进程中,一共有11个线程,其中10个守护线程,1个用户线程。我们main方法中的代码,就跑在一个名为main的线程中。当Java进程中跑着的所有线程都是守护线程时,JVM就会退出

    在单线程的场景下,如果代码运行到某个位置时抛出了异常,会看到控制台打印出异常的堆栈信息。但在多线程的场景下,子线程中发生的异常,不一定就能及时的将异常信息打印出来。

    我曾经在工作中遇到过一次,采用CompletableFuture.runAsync异步处理耗时任务时,任务处理过程中出现异常,然而日志中没有任何关于异常的信息。时隔许久,重新温习了线程中的异常处理机制,加深了对线程工作原理的理解,特此记录。

    线程的异常处理机制

    我们知道,Java程序的运行,是先经由javac将Java源代码编译成class字节码文件,然后由JVM加载并解析class文件,随后从主类的main方法开始执行。当一个线程在运行过程中抛出了未捕获异常时,会由JVM调用这个线程对象上的dispatchUncaughtException方法,进行异常处理。

    // Thread类中
    private void dispatchUncaughtException(Throwable e) {
            getUncaughtExceptionHandler().uncaughtException(this, e);
    }
    Copier après la connexion

    源码很好理解,先获取一个UncaughtExceptionHandler异常处理器,然后通过调用这个异常处理器的uncaughtException方法来对异常进行处理。(下文用缩写ueh来表示UncaughtExceptionHandler

    ueh是个 啥呢?其实就是定义在Thread内部的一个接口,用作异常处理。

        @FunctionalInterface
        public interface UncaughtExceptionHandler {
            /**
             * Method invoked when the given thread terminates due to the
             * given uncaught exception.
             * <p>Any exception thrown by this method will be ignored by the
             * Java Virtual Machine.
             * @param t the thread
             * @param e the exception
             */
            void uncaughtException(Thread t, Throwable e);
        }
    Copier après la connexion

    再来看下Thread对象中的getUncaughtExceptionHandler方法

    	public UncaughtExceptionHandler getUncaughtExceptionHandler() {
            return uncaughtExceptionHandler != null ?
                uncaughtExceptionHandler : group;
        }
    Copier après la connexion

    先查看当前这个Thread对象是否有设置自定义的ueh对象,若有,则由其对异常进行处理,否则,由当前Thread对象所属的线程组(ThreadGroup)进行异常处理。我们点开源码,容易发现ThreadGroup类本身实现了Thread.UncaughtExceptionHandler接口,也就是说ThreadGroup本身就是个异常处理器。

    public class ThreadGroup implements Thread.UncaughtExceptionHandler {
        private final ThreadGroup parent;
        ....
    }
    Copier après la connexion

    假设我们在main方法中抛出一个异常,若没有对main线程设置自定义的ueh对象,则交由main线程所属的ThreadGroup来处理异常。我们看下ThreadGroup是怎么处理异常的:

        public void uncaughtException(Thread t, Throwable e) {
            if (parent != null) {
                parent.uncaughtException(t, e);
            } else {
                Thread.UncaughtExceptionHandler ueh =
                    Thread.getDefaultUncaughtExceptionHandler();
                if (ueh != null) {
                    ueh.uncaughtException(t, e);
                } else if (!(e instanceof ThreadDeath)) {
                    System.err.print("Exception in thread \""
                                     + t.getName() + "\" ");
                    e.printStackTrace(System.err);
                }
            }
        }
    Copier après la connexion

    这部分源码也比较简短。首先是查看当前ThreadGroup是否拥有父级的ThreadGroup,若有,则调用父级ThreadGroup进行异常处理。否则,调用静态方法Thread.getDefaultUncaughtExceptionHandler()获取一个默认ueh对象。

    默认ueh对象不为空,则由这个默认的ueh对象进行异常处理;否则,当异常不是ThreadDeath时,直接将当前线程的名字,和异常的堆栈信息,通过标准错误输出System.err)打印到控制台。

    我们随便运行一个main方法,看一下线程的情况

    Quel est le mécanisme de gestion des exceptions dans les threads Java ?

    Quel est le mécanisme de gestion des exceptions dans les threads Java ?

    可以看到,main线程属于一个同样名为mainThreadGroup,而这个mainThreadGroup,其父级ThreadGroup名为system,而这个systemThreadGroup,没有父级了,它就是根ThreadGroup

    由此可知,main线程中抛出的未捕获异常,最终会交由名为systemThreadGroup进行异常处理,而由于没有设置默认ueh对象,异常信息会通过System.err输出到控制台。

    接下来,我们通过最朴素的方式(new一个Thread),在main

    Quel est le mécanisme de gestion des exceptions des threads Java🎜🎜Vous pouvez voir qu'il y a 11 threads dans ce processus Java, dont 10 threads démon et 1 thread utilisateur. Le code de notre méthode principale s'exécute dans un thread nommé main. Lorsque tous les threads exécutés dans le processus Java sont des threads démons, la JVM se ferme. 🎜🎜Dans un scénario monothread, si une exception est levée lorsque le code s'exécute vers un certain emplacement, vous verrez les informations de la pile d'exceptions imprimées sur la console. Cependant, dans un scénario multithread, les exceptions qui se produisent dans les sous-threads n'impriment pas nécessairement les informations d'exception en temps opportun. 🎜🎜J'ai rencontré une fois au travail que lors de l'utilisation de CompletableFuture.runAsync pour traiter de manière asynchrone une tâche fastidieuse, une exception se produisait pendant le traitement de la tâche, mais il n'y avait aucune information sur l'exception dans le journal. Après un long moment, j'ai revisité le mécanisme de gestion des exceptions dans les threads et approfondi ma compréhension des principes de fonctionnement des threads. Je l'enregistre ici. 🎜🎜Mécanisme de gestion des exceptions des threads🎜🎜Nous savons que pour exécuter un programme Java, le code source Java est d'abord compilé dans un fichier de bytecode de classe via javac, puis le fichier de classe est chargé et analysé par la JVM, puis l'exécution démarre à partir de la méthode principale de la classe principale. Lorsqu'un thread lève une exception non interceptée pendant le fonctionnement, la JVM appelle la méthode dispatchUncaughtException sur l'objet thread pour la gestion des exceptions. 🎜
        public static void main(String[] args)  {
            Thread thread = new Thread(() -> {
                System.out.println(3 / 0);
            });
            thread.start();
        }
    Copier après la connexion
    Copier après la connexion
    🎜Le code source est facile à comprendre. Obtenez d'abord un gestionnaire d'exceptions UncaughtExceptionHandler, puis gérez l'exception en appelant la méthode uncaughtException de ce gestionnaire d'exceptions. (L'abréviation ueh est utilisée ci-dessous pour représenter UncaughtExceptionHandler) 🎜🎜Qu'est-ce que ueh ? En fait, il s'agit d'une interface définie dans Thread et utilisée pour la gestion des exceptions. 🎜
        public static void main(String[] args)  {
            ExecutorService threadPool = Executors.newSingleThreadExecutor();
            threadPool.execute(() -> {
                System.out.println(3 / 0);
            });
        }
    Copier après la connexion
    Copier après la connexion
    🎜 Jetons un coup d'œil à la méthode getUncaughtExceptionHandler dans l'objet Thread 🎜
        public static void main(String[] args)  {
            ExecutorService threadPool = Executors.newSingleThreadExecutor();
            threadPool.submit(() -> {
                System.out.println(3 / 0);
            });
        }
    Copier après la connexion
    Copier après la connexion
    🎜Vérifiez d'abord si l'objet Thread actuel a un < personnalisé code> >ueh, s'il y en a un, gérera l'exception. Sinon, le groupe de threads (ThreadGroup) auquel appartient l'objet Thread actuel. gérer l'exception. Lorsque nous cliquons sur le code open source, nous pouvons facilement constater que la classe ThreadGroup elle-même implémente l'interface Thread.UncaughtExceptionHandler, ce qui signifie que ThreadGroup lui-même est un gestionnaire d’exceptions. 🎜
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                this.thread = getThreadFactory().newThread(this);
            }
    Copier après la connexion
    Copier après la connexion
    🎜Supposons que nous lançons une exception dans la méthode main. Si un objet ueh personnalisé n'est pas défini pour le thread main, il le sera. remis au ThreadGroup auquel appartient le thread main est utilisé pour gérer les exceptions. Voyons comment ThreadGroup gère les exceptions : 🎜
        public Future<?> submit(Runnable task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<Void> ftask = newTaskFor(task, null);
            execute(ftask);
            return ftask;
        }
    Copier après la connexion
    Copier après la connexion
    Copier après la connexion
    🎜Cette partie du code source est également relativement courte. La première consiste à vérifier si le ThreadGroup actuel a un ThreadGroup parent. Si tel est le cas, appelez le ThreadGroup parent pour la gestion des exceptions. Sinon, appelez la méthode statique Thread.getDefaultUncaughtExceptionHandler() pour obtenir un objet par défaut ueh. 🎜🎜Si l'objet default ueh n'est pas vide, l'objet ueh par défaut effectuera la gestion des exceptions, sinon, lorsque l'exception n'est pas ThreadDeath, affiche directement le nom du thread actuel et les informations sur la pile d'exceptions via la sortie d'erreur standard (System.err ) s'imprime sur la console. 🎜🎜Exécutons simplement une méthode main et jetons un œil à la situation du fil🎜🎜Quel est le mécanisme de gestion des exceptions des threads Java🎜🎜Quel est le mécanisme de gestion des exceptions des threads Java ?🎜🎜Vous pouvez voir que le thread main appartient à un ThreadGroup également nommé main<. /code>, et le <code>ThreadGroup de ce main a son ThreadGroup parent nommé system, et ce Le <code>ThreadGroup du système > n'a pas de parent, c'est le ThreadGroup racine. 🎜🎜On peut voir que l'exception non interceptée lancée dans le thread main sera finalement transmise au ThreadGroup nommé system pour la gestion des exceptions. Étant donné que l'objet ueh de default n'est pas défini, les informations d'exception seront affichées sur la console via System.err. 🎜🎜Ensuite, nous créons un sous-thread dans le thread main de la manière la plus simple (nouveau un Thread), et dans le sous-thread fil Écrivez du code qui peut lever des exceptions et l'observer🎜
        public static void main(String[] args)  {
            Thread thread = new Thread(() -> {
                System.out.println(3 / 0);
            });
            thread.start();
        }
    Copier après la connexion
    Copier après la connexion

    Quel est le mécanisme de gestion des exceptions dans les threads Java ?

    子线程中的异常信息被打印到了控制台。异常处理的流程就是我们上面描述的那样。

    小结

    所以,正常来说,如果没有对某个线程设置特定的ueh对象;也没有调用静态方法Thread.setDefaultUncaughtExceptionHandler设置全局默认ueh对象。那么,在任意一个线程的运行过程中抛出未捕获异常时,异常信息都会被输出到控制台(当异常是ThreadDeath时则不会进行输出,但通常来说,异常都不是ThreadDeath,不过这个细节要注意下)。

    如何设置自定义的ueh对象来进行异常处理?根据上面的分析可知,有2种方式

    • 对某一个Thread对象,调用其setUncaughtExceptionHandler方法,设置一个ueh对象。注意这个ueh对象只对这个线程起作用

    • 调用静态方法Thread.setDefaultUncaughtExceptionHandler()设置一个全局默认ueh对象。这样设置的ueh对象会对所有线程起作用

    当然,由于ThreadGroup本身可以充当ueh,所以其实还可以实现一个ThreadGroup子类,重写其uncaughtException方法进行异常处理。

    若一个线程没有进行任何设置,当在这个线程内抛出异常后,默认会将线程名称和异常堆栈,通过System.err进行输出。

    线程池场景下的异常处理

    在实际的开发中,我们经常会使用线程池来进行多线程的管理和控制,而不是通过new来手动创建Thread对象。

    对于Java中的线程池ThreadPoolExecutor,我们知道,通常来说有两种方式,可以向线程池提交任务:

    • execute

    • submit

    其中execute方法没有返回值,我们通过execute提交的任务,只需要提交该任务给线程池执行,而不需要获取任务的执行结果。而submit方法,会返回一个Future对象,我们通过submit提交的任务,可以通过这个Future对象,拿到任务的执行结果。

    我们分别尝试如下代码:

        public static void main(String[] args)  {
            ExecutorService threadPool = Executors.newSingleThreadExecutor();
            threadPool.execute(() -> {
                System.out.println(3 / 0);
            });
        }
    Copier après la connexion
    Copier après la connexion
        public static void main(String[] args)  {
            ExecutorService threadPool = Executors.newSingleThreadExecutor();
            threadPool.submit(() -> {
                System.out.println(3 / 0);
            });
        }
    Copier après la connexion
    Copier après la connexion

    容易得到如下结果:

    通过execute方法提交的任务,异常信息被打印到控制台;通过submit方法提交的任务,没有出现异常信息。

    我们稍微跟一下ThreadPoolExecutor的源码,当使用execute方法提交任务时,在runWorker方法中,会执行到下图红框的部分

    Quel est le mécanisme de gestion des exceptions dans les threads Java ?

    Quel est le mécanisme de gestion des exceptions dans les threads Java ?

    在上面的代码执行完毕后,由于异常被throw了出来,所以会由JVM捕捉到,并调用当前子线程dispatchUncaughtException方法进行处理,根据上面的分析,最终异常堆栈会被打印到控制台。

    多扯几句别的。

    上面跟源码时,注意到WorkerThreadPoolExecutor的一个内部类,也就是说,每个Worker都会隐式的持有ThreadPoolExecutor对象的引用(内部类的相关原理请自行补课)。每个Worker在运行时(在不同的子线程中运行)都能够对ThreadPoolExecutor对象(通常来说这个对象是在main线程中被维护)中的属性进行访问和修改。Worker实现了Runnable接口,并且其run方法实际是调用的ThreadPoolExecutor上的runWorker方法。在新建一个Worker时,会创建一个新的Thread对象,并把当前Worker的引用传递给这个Thread对象,随后调用这个Thread对象的start方法,则开始在这个Thread中(子线程中)运行这个Worker

            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                this.thread = getThreadFactory().newThread(this);
            }
    Copier après la connexion
    Copier après la connexion

    ThreadPoolExecutor中的addWorker方法

    Quel est le mécanisme de gestion des exceptions dans les threads Java ?

    再次跟源码时,加深了对ThreadPoolExecutorWorker体系的理解和认识。

    它们之间有一种嵌套依赖的关系。每个Worker里持有一个Thread对象,这个Thread对象又是以这个Worker对象作为Runnable,而Worker又是ThreadPoolExecutor的内部类,这意味着每个Worker对象都会隐式的持有其所属的ThreadPoolExecutor对象的引用。每个Workerrun方法, 都跑在子线程中,但是这些Worker跑在子线程中时,能够对ThreadPoolExecutor对象的属性进行访问和修改(每个Workerrun方法都是调用的runWorker,所以runWorker方法是跑在子线程中的,这个方法中会对线程池的状态进行访问和修改,比如当前子线程运行过程中抛出异常时,会从ThreadPoolExecutor中移除当前Worker,并启一个新的Worker)。而通常来说,ThreadPoolExecutor对象的引用,我们通常是在主线程中进行维护的。

    反正就是这中间其实有点骚东西,没那么简单。需要多跟几次源码,多自己打断点进行debug,debug过程中可以通过IDEA的Evaluate Expression功能实时观察当前方法执行时所处的线程环境(Thread.currentThread)。

    扯得有点远了,现在回到正题。上面说了调用ThreadPoolExecutor中的execute方法提交任务,子线程中出现异常时,异常会被抛出,打印在控制台,并且当前Worker会被线程池回收,并重启一个新的Worker作为替代。那么,调用submit时,异常为何就没有被打印到控制台呢?

    我们看一下源码:

        public Future<?> submit(Runnable task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<Void> ftask = newTaskFor(task, null);
            execute(ftask);
            return ftask;
        }
    Copier après la connexion
    Copier après la connexion
    Copier après la connexion
        protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
            return new FutureTask<T>(runnable, value);
        }
    Copier après la connexion

    通过调用submit提交的任务,被包装了成了一个FutureTask对象,随后会将这个FutureTask对象,通过execute方法提交给线程池,并返回FutureTask对象给主线程的调用者。

    也就是说,submit方法实际做了这几件事

    • 将提交的Runnable,包装成FutureTask

    • 调用execute方法提交这个FutureTask(实际还是通过execute提交的任务)

    • FutureTask作为返回值,返回给主线程的调用者

    关键就在于FutureTask,我们来看一下

        public FutureTask(Runnable runnable, V result) {
            this.callable = Executors.callable(runnable, result);
            this.state = NEW;       // ensure visibility of callable
        }
    Copier après la connexion
        // Executors中
    	public static <T> Callable<T> callable(Runnable task, T result) {
            if (task == null)
                throw new NullPointerException();
            return new RunnableAdapter<T>(task, result);
        }
    Copier après la connexion
        static final class RunnableAdapter<T> implements Callable<T> {
            final Runnable task;
            final T result;
            RunnableAdapter(Runnable task, T result) {
                this.task = task;
                this.result = result;
            }
            public T call() {
                task.run();
                return result;
            }
        }
    Copier après la connexion

    通过submit方法传入的Runnable,通过一个适配器RunnableAdapter转化为了Callable对象,并最终包装成为一个FutureTask对象。这个FutureTask,又实现了RunnableFuture接口

    Quel est le mécanisme de gestion des exceptions dans les threads Java ?

    于是我们看下FutureTaskrun方法(因为最终是将包装后的FutureTask提交给线程池执行,所以最终会执行FutureTaskrun方法)

    Quel est le mécanisme de gestion des exceptions dans les threads Java ?

        protected void setException(Throwable t) {
            if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
                outcome = t;
                UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
                finishCompletion();
            }
        }
    Copier après la connexion

    可以看到,异常信息只是被简单的设置到了FutureTaskoutcome字段上。并没有往外抛,所以这里其实相当于把异常给生吞了catch块中捕捉到异常后,既没有打印异常的堆栈,也没有把异常继续往外throw。所以我们无法在控制台看到异常信息,在实际的项目中,此种场景下的异常信息也不会被输出到日志文件。这一点要特别注意,会加大问题的排查难度。

    那么,为什么要这样处理呢?

    因为我们通过submit提交任务时,会拿到一个Future对象

        public Future<?> submit(Runnable task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<Void> ftask = newTaskFor(task, null);
            execute(ftask);
            return ftask;
        }
    Copier après la connexion
    Copier après la connexion
    Copier après la connexion

    我们可以在稍后,通过Future对象,来获知任务的执行情况,包括任务是否成功执行完毕,任务执行后返回的结果是什么,执行过程中是否出现异常。

    所以,通过submit提交的任务,实际会把任务的各种状态信息,都封装在FutureTask对象中。当最后调用FutureTask对象上的get方法,尝试获取任务执行结果时,才能够看到异常信息被打印出来。

        public V get() throws InterruptedException, ExecutionException {
            int s = state;
            if (s <= COMPLETING)
                s = awaitDone(false, 0L);
            return report(s);
        }
    Copier après la connexion
        private V report(int s) throws ExecutionException {
            Object x = outcome;
            if (s == NORMAL)
                return (V)x;
            if (s >= CANCELLED)
                throw new CancellationException();
            throw new ExecutionException((Throwable)x); // 异常会通过这一句被抛出来
        }
    Copier après la connexion

    小结

    • 通过ThreadPoolExecutorexecute方法提交的任务,出现异常后,异常会在子线程中被抛出,并被JVM捕获,并调用子线程的dispatchUncaughtException方法,进行异常处理,若子线程没有任何特殊设置,则异常堆栈会被输出到System.err,即异常会被打印到控制台上。并且会从线程池中移除当前Worker,并另启一个新的Worker作为替代。

    • 通过ThreadPoolExecutorsubmit方法提交的任务,任务会先被包装成FutureTask对象,出现异常后,异常会被生吞,并暂存到FutureTask对象中,作为任务执行结果的一部分。异常信息不会被打印该子线程也不会被线程池移除(因为异常在子线程中被吞了,没有抛出来)。在调用FutureTask上的get方法时(此时一般是在主线程中了),异常才会被抛出,触发主线程的异常处理,并输出到System.err

    其他

    其他的线程池场景

    比如:

    • 使用ScheduledThreadPoolExecutor实现延迟任务或者定时任务(周期任务),分析过程也是类似。这里给个简单结论,当调用scheduleAtFixedRate方法执行一个周期任务时(任务会被包装成FutureTask (实际是ScheduledFutureTask ,是FutureTask 的子类)),若周期任务中出现异常,异常会被生吞,异常信息不会被打印,线程不会被回收,但是周期任务执行这一次后就不会继续执行了。ScheduledThreadPoolExecutor继承了ThreadPoolExecutor,所以其也是复用了ThreadPoolExecutor的那一套逻辑。

    • 使用CompletableFuture runAsync 提交任务,底层是通过ForkJoinPool 线程池进行执行,任务会被包装成AsyncRun ,且会返回一个CompletableFuture 给主线程。当任务出现异常时,处理方式和ThreadPoolExecutor 的submit 类似,异常堆栈不会被打印。只有在CompletableFuture 上调用get 方法尝试获取结果时,异常才会被打印。

    Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

    Étiquettes associées:
    source:yisu.com
    Déclaration de ce site Web
    Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
    Tutoriels populaires
    Plus>
    Derniers téléchargements
    Plus>
    effets Web
    Code source du site Web
    Matériel du site Web
    Modèle frontal