


Quel est le processus d'arbre de décision de l'algorithme d'intelligence artificielle Python ?
Decision Tree
est un algorithme qui effectue une classification ou une régression en divisant un ensemble de données en petits sous-ensembles traitables. Chaque nœud représente une fonctionnalité utilisée pour diviser les données, et chaque nœud feuille représente une catégorie ou une valeur prédite. Lors de la création d'un arbre de décision, l'algorithme sélectionnera les meilleures caractéristiques pour diviser les données afin que les données de chaque sous-ensemble appartiennent à la même catégorie ou présentent autant que possible des caractéristiques similaires. Ce processus sera répété en continu, semblable à la récursion en Java, jusqu'à ce qu'une condition d'arrêt soit atteinte (par exemple, le nombre de nœuds feuilles atteint une valeur prédéfinie), formant un arbre de décision complet. Il convient à la gestion des tâches de classification et de régression. Dans le domaine de l’intelligence artificielle, l’arbre de décision est également un algorithme classique aux applications étendues.
Puis présentons brièvement le processus de l'arbre de décision :
Préparation des données Supposons que nous disposions d'un ensemble de données sur un restaurant, comprenant des attributs tels que le sexe du client, s'il fume, l'heure du repas et si le client laisse les informations de pourboire. Notre tâche consiste à utiliser ces attributs pour prédire si un client repart avec un pourboire.
Nettoyage des données et ingénierie des fonctionnalitésPour le nettoyage des données, nous devons traiter les valeurs manquantes, les valeurs aberrantes, etc. pour garantir l'intégrité et l'exactitude des données. Pour l'ingénierie des fonctionnalités, nous devons traiter les données d'origine et extraire les fonctionnalités les plus discriminantes. Par exemple, nous pouvons discrétiser les heures de repas en matin, midi et soir, et convertir le sexe et le statut tabagique en valeurs 0/1, etc.
Diviser l'ensemble de données Nous divisons l'ensemble de données en un ensemble d'entraînement et un ensemble de test, généralement en utilisant la validation croisée.
Créer un arbre de décisionNous pouvons utiliser ID3, C4.5, CART et d'autres algorithmes pour construire un arbre de décision. Ici, nous prenons l'algorithme ID3 comme exemple. La clé est de calculer le gain d'information. Nous pouvons calculer le gain d'informations pour chaque attribut, trouver l'attribut avec le gain d'informations le plus important en tant que nœud divisé et construire le sous-arbre de manière récursive.
Évaluation du modèleNous pouvons utiliser la précision, le rappel, le score F1 et d'autres indicateurs pour évaluer les performances du modèle.
Réglage du modèle Nous pouvons encore améliorer les performances du modèle en élaguant et en ajustant les paramètres de l'arbre de décision.
Application de modèleEnfin, nous pouvons appliquer le modèle entraîné à de nouvelles données pour faire des prédictions et des décisions.
Apprenons-le à travers un exemple simple :
Supposons que nous ayons l'ensemble de données suivant :
Fonctionnalité 1 | Fonctionnalité 2 | Catégorie |
---|---|---|
1 | 1 | Homme |
1 | 0 | Homme |
0 | 1 | Homme |
0 | 0 | Femme |
Nous pouvons le faire en construisant l'arbre de décision suivant :
Si la caractéristique 1 = 1, il est classé comme masculin ; sinon (c'est-à-dire la caractéristique 1 = 0), si la caractéristique 2 = 1, il est classé comme masculin sinon (c'est-à-dire la caractéristique 2 = 0), il est classé comme féminin ;
feature1 = 1 feature2 = 0 # 解析决策树函数 def predict(feature1, feature2): if feature1 == 1: print("男") else: if feature2 == 1: print("男") else: print("女")
Dans cet exemple, nous choisissons la fonctionnalité 1 comme premier point de partage car elle peut diviser l'ensemble de données en deux sous-ensembles contenant la même catégorie ; puis nous choisissons la fonctionnalité 2 comme deuxième point de partage car elle est capable de diviser les données restantes. divisé en deux sous-ensembles contenant la même catégorie. Enfin, nous obtenons un arbre de décision complet permettant de classer les nouvelles données.
Bien que l'algorithme de l'arbre de décision soit facile à comprendre et à mettre en œuvre, divers problèmes et situations doivent être pleinement pris en compte dans des applications pratiques :
Surajustement : dans l'algorithme de l'arbre de décision, le surajustement est un problème courant. Problèmes, en particulier lorsque la quantité de données de l'ensemble d'entraînement est insuffisante ou les valeurs des caractéristiques sont grandes, peuvent facilement conduire à un surapprentissage. Afin d'éviter cette situation, l'arbre de décision peut être optimisé en l'élaguant d'abord ou en l'élaguant plus tard.
Taillez d'abord : "Taillez" l'arbre en arrêtant précocement sa construction, les nœuds deviennent des feuilles. La méthode générale de traitement consiste à limiter la hauteur et le nombre d'échantillons de feuilles. Post-élagage : après avoir construit un arbre de décision complet, remplacez une branche moins précise par une feuille et étiquetez-la avec la classe la plus fréquente dans le sous-arbre de nœuds.
Sélection des fonctionnalités : l'algorithme de l'arbre de décision utilise généralement des méthodes telles que le gain d'informations ou l'indice de Gini pour calculer l'importance de chaque fonctionnalité, puis sélectionne les fonctionnalités optimales pour le partitionnement. Cependant, cette méthode ne peut pas garantir les caractéristiques globales optimales, elle peut donc affecter la précision du modèle.
Traitement des fonctionnalités continues : les algorithmes d'arbre de décision discrétisent généralement les fonctionnalités continues, ce qui peut perdre certaines informations utiles. Afin de résoudre ce problème, vous pouvez envisager d'utiliser des méthodes telles que la méthode de dichotomie pour traiter les entités continues.
Traitement des valeurs manquantes : En réalité, les données ont souvent des valeurs manquantes, ce qui pose certains défis à l'algorithme de l'arbre de décision. Habituellement, vous pouvez remplir les valeurs manquantes, supprimer les valeurs manquantes, etc.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.
