


Comment utiliser le réseau neuronal artificiel de l'algorithme d'intelligence artificielle Python
Artificial Neural Network
(Artificial Neural Network, ANN) est un modèle mathématique qui imite la structure et la fonction des réseaux de neurones biologiques. Son objectif est de pouvoir effectuer une cartographie non linéaire complexe lors du traitement de données d'entrée inconnues grâce à des relations d'apprentissage et de formation. pour parvenir à une prise de décision intelligente et adaptative. On peut dire que l'ANN est l'algorithme le plus basique et le plus central parmi les algorithmes d'intelligence artificielle.
La structure de base du modèle ANN comprend la couche d'entrée, la couche cachée et la couche de sortie. La couche d'entrée reçoit les données d'entrée, la couche cachée est responsable de la transformation et du traitement des données à plusieurs niveaux et de grande dimension, et la couche de sortie produit les données traitées. Le processus de formation d'ANN consiste à ajuster en permanence les poids de chaque couche du réseau neuronal à travers plusieurs itérations, afin que le réseau neuronal puisse prédire et classer correctement les données d'entrée.
Exemple d'algorithme de réseau de neurones artificiels
Regardons ensuite un exemple simple d'algorithme de réseau de neurones artificiels :
import numpy as np class NeuralNetwork(): def __init__(self, layers): """ layers: 数组,包含每个层的神经元数量,例如 [2, 3, 1] 表示 3 层神经网络,第一层 2 个神经元,第二层 3 个神经元,第三层 1 个神经元。 weights: 数组,包含每个连接的权重矩阵,默认值随机生成。 biases: 数组,包含每个层的偏差值,默认值为 0。 """ self.layers = layers self.weights = [np.random.randn(a, b) for a, b in zip(layers[1:], layers[:-1])] self.biases = [np.zeros((a, 1)) for a in layers[1:]] def sigmoid(self, z): """Sigmoid 激活函数.""" return 1 / (1 + np.exp(-z)) def forward_propagation(self, a): """前向传播.""" for w, b in zip(self.weights, self.biases): z = np.dot(w, a) + b a = self.sigmoid(z) return a def backward_propagation(self, x, y): """反向传播.""" nabla_w = [np.zeros(w.shape) for w in self.weights] nabla_b = [np.zeros(b.shape) for b in self.biases] a = x activations = [x] zs = [] for w, b in zip(self.weights, self.biases): z = np.dot(w, a) + b zs.append(z) a = self.sigmoid(z) activations.append(a) delta = self.cost_derivative(activations[-1], y) * self.sigmoid_prime(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) for l in range(2, len(self.layers)): z = zs[-l] sp = self.sigmoid_prime(z) delta = np.dot(self.weights[-l+1].transpose(), delta) * sp nabla_b[-l] = delta nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) return (nabla_w, nabla_b) def train(self, x_train, y_train, epochs, learning_rate): """训练网络.""" for epoch in range(epochs): nabla_w = [np.zeros(w.shape) for w in self.weights] nabla_b = [np.zeros(b.shape) for b in self.biases] for x, y in zip(x_train, y_train): delta_nabla_w, delta_nabla_b = self.backward_propagation(np.array([x]).transpose(), np.array([y]).transpose()) nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] self.weights = [w-(learning_rate/len(x_train))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(learning_rate/len(x_train))*nb for b, nb in zip(self.biases, nabla_b)] def predict(self, x_test): """预测.""" y_predictions = [] for x in x_test: y_predictions.append(self.forward_propagation(np.array([x]).transpose())[0][0]) return y_predictions def cost_derivative(self, output_activations, y): """损失函数的导数.""" return output_activations - y def sigmoid_prime(self, z): """Sigmoid 函数的导数.""" return self.sigmoid(z) * (1 - self.sigmoid(z))
Utilisez l'exemple de code suivant pour instancier et utiliser cette classe de réseau de neurones simple :
x_train = [[0, 0], [1, 0], [0, 1], [1, 1]] y_train = [0, 1, 1, 0] # 创建神经网络 nn = NeuralNetwork([2, 3, 1]) # 训练神经网络 nn.train(x_train, y_train, 10000, 0.1) # 测试神经网络 x_test = [[0, 0], [1, 0], [0, 1], [1, 1]] y_test = [0, 1, 1, 0] y_predictions = nn.predict(x_test) print("Predictions:", y_predictions) print("Actual:", y_test)
Résultats de sortie :
Prédictions : [ 0.011602156431658403, 0.9852717774725432, 0.9839448924887225, 0.020026540429992387]
Réel : [0, 1, 1, 0]
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'article présente le fonctionnement de la base de données MySQL. Tout d'abord, vous devez installer un client MySQL, tel que MySQLWorkBench ou le client de ligne de commande. 1. Utilisez la commande MySQL-UROot-P pour vous connecter au serveur et connecter avec le mot de passe du compte racine; 2. Utilisez Createdatabase pour créer une base de données et utilisez Sélectionner une base de données; 3. Utilisez CreateTable pour créer une table, définissez des champs et des types de données; 4. Utilisez InsertInto pour insérer des données, remettre en question les données, mettre à jour les données par mise à jour et supprimer les données par Supprimer. Ce n'est qu'en maîtrisant ces étapes, en apprenant à faire face à des problèmes courants et à l'optimisation des performances de la base de données que vous pouvez utiliser efficacement MySQL.

La clé du contrôle des plumes est de comprendre sa nature progressive. Le PS lui-même ne fournit pas la possibilité de contrôler directement la courbe de gradient, mais vous pouvez ajuster de manière flexible le rayon et la douceur du gradient par plusieurs plumes, des masques correspondants et des sélections fines pour obtenir un effet de transition naturel.

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

La plume PS est un effet flou du bord de l'image, qui est réalisé par la moyenne pondérée des pixels dans la zone de bord. Le réglage du rayon de la plume peut contrôler le degré de flou, et plus la valeur est grande, plus elle est floue. Le réglage flexible du rayon peut optimiser l'effet en fonction des images et des besoins. Par exemple, l'utilisation d'un rayon plus petit pour maintenir les détails lors du traitement des photos des caractères et l'utilisation d'un rayon plus grand pour créer une sensation brumeuse lorsque le traitement de l'art fonctionne. Cependant, il convient de noter que trop grand, le rayon peut facilement perdre des détails de bord, et trop petit, l'effet ne sera pas évident. L'effet de plumes est affecté par la résolution de l'image et doit être ajusté en fonction de la compréhension de l'image et de la saisie de l'effet.

L'interface de chargement de la carte PS peut être causée par le logiciel lui-même (corruption de fichiers ou conflit de plug-in), l'environnement système (corruption du pilote ou des fichiers système en raison), ou matériel (corruption du disque dur ou défaillance du bâton de mémoire). Vérifiez d'abord si les ressources informatiques sont suffisantes, fermez le programme d'arrière-plan et publiez la mémoire et les ressources CPU. Correction de l'installation de PS ou vérifiez les problèmes de compatibilité pour les plug-ins. Mettre à jour ou tomber la version PS. Vérifiez le pilote de la carte graphique et mettez-le à jour et exécutez la vérification du fichier système. Si vous résumez les problèmes ci-dessus, vous pouvez essayer la détection du disque dur et les tests de mémoire.

L'optimisation des performances MySQL doit commencer à partir de trois aspects: configuration d'installation, indexation et optimisation des requêtes, surveillance et réglage. 1. Après l'installation, vous devez ajuster le fichier my.cnf en fonction de la configuration du serveur, tel que le paramètre innodb_buffer_pool_size, et fermer query_cache_size; 2. Créez un index approprié pour éviter les index excessifs et optimiser les instructions de requête, telles que l'utilisation de la commande Explication pour analyser le plan d'exécution; 3. Utilisez le propre outil de surveillance de MySQL (ShowProcessList, Showstatus) pour surveiller la santé de la base de données, et sauvegarde régulièrement et organisez la base de données. Ce n'est qu'en optimisant en continu ces étapes que les performances de la base de données MySQL peuvent être améliorées.

Les plumes de PS peuvent entraîner une perte de détails d'image, une saturation des couleurs réduite et une augmentation du bruit. Pour réduire l'impact, il est recommandé d'utiliser un rayon de plumes plus petit, de copier la couche puis de plume, et de comparer soigneusement la qualité d'image avant et après les plumes. De plus, les plumes ne conviennent pas à tous les cas, et parfois les outils tels que les masques conviennent plus à la gestion des bords de l'image.

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.
