Maison > développement back-end > Tutoriel Python > Comment utiliser Python pour implémenter l'algorithme PSO afin de résoudre le problème TSP ?

Comment utiliser Python pour implémenter l'algorithme PSO afin de résoudre le problème TSP ?

PHPz
Libérer: 2023-05-08 08:34:07
avant
2290 Les gens l'ont consulté

Algorithme PSO

Alors avant de commencer, parlons de l'algorithme PSO de base. Le noyau n'en est qu'un :

Comment utiliser Python pour implémenter lalgorithme PSO afin de résoudre le problème TSP ?

Comment utiliser Python pour implémenter lalgorithme PSO afin de résoudre le problème TSP ?

Expliquez-nous cette formule, et vous comprendrez.

Anciennes règles, nous supposons qu'il existe une équation y=sin(x1)+cos(x2)

L'algorithme PSO réalise notre optimisation en simulant la migration des oiseaux. Comment cela se produit-il. ? Oui, je n'entrerai pas dans les détails, mais parlons du fond.

Dans l'équation que nous venons d'avoir, il y a deux variables, x1 et x2. Parce qu'il s'agit d'un oiseau simulé, afin de réaliser la méthode aveugle, le concept de vitesse est introduit ici. X est naturellement notre domaine réalisable, qui est l'espace des solutions. En modifiant la vitesse, x est déplacé, c'est-à-dire que la valeur de x est modifiée. Parmi eux, Pbest représente la solution optimale pour l’endroit où l’oiseau a marché, et Gbest représente la solution optimale pour l’ensemble de la population. Que voulez-vous dire, c'est-à-dire qu'à mesure qu'il bouge, cet oiseau peut se déplacer vers une position pire, car contrairement à la génétique, il sera tué s'il est mauvais, mais celui-ci ne le sera pas. Bien entendu, de nombreux problèmes locaux sont impliqués, dont nous ne discuterons pas ici. Aucun algorithme n’est parfait, et celui-ci est juste.

Processus de l'algorithme

Le processus principal de l'algorithme :

La première étape : initialiser la position et la vitesse aléatoires de l'essaim de particules, et définir Déterminez le nombre d’itérations.

Étape 2 : Calculez la valeur de fitness de chaque particule.

La troisième étape : pour chaque particule, comparez sa valeur de condition physique avec la valeur de forme physique de la meilleure position que j'ai connue. Si elle est meilleure, utilisez-la comme meilleur emplacement individuel actuel.

Étape 4 : Pour chaque particule, comparez sa valeur de condition physique avec la valeur de forme physique de la meilleure position expérimentée dans le monde. Si elle est meilleure, utilisez-la comme meilleur emplacement mondial actuel.

Étape 5 : Optimisez la vitesse et la position des particules en fonction des formules de vitesse et de position pour mettre à jour la position des particules.

Étape 6 : Si la condition de fin n'est pas remplie (généralement le nombre maximum de cycles ou l'exigence d'erreur minimale), revenez à la deuxième étape

Comment utiliser Python pour implémenter lalgorithme PSO afin de résoudre le problème TSP ?# 🎜🎜#

Avantages :

L'algorithme PSO n'a pas d'opérations de croisement et de mutation, s'appuie sur la vitesse des particules pour terminer la recherche, et seules les particules optimales transmettent des informations aux autres particules au cours de l'évolution itérative, donc la vitesse de recherche est rapide.

L'algorithme PSO a de la mémoire et la meilleure position historique du groupe de particules peut être mémorisée et transmise à d'autres particules.

Il y a moins de paramètres à ajuster, la structure est simple et il est facile de mettre en œuvre l'ingénierie.

utilise un codage en nombres réels, qui est directement déterminé par la solution du problème. Le nombre de variables dans la solution du problème est directement utilisé comme dimension de la particule.

Inconvénients :

manque d'ajustement dynamique de la vitesse et tombe facilement dans l'optimalité locale, ce qui entraîne une faible précision de convergence et une difficulté de convergence.

ne peut pas résoudre efficacement les problèmes d'optimisation discrète et combinatoire.

Contrôle des paramètres, pour différents problèmes, comment choisir les paramètres appropriés pour obtenir des résultats optimaux.

ne peut pas résoudre efficacement certains problèmes de description de systèmes de coordonnées non cartésiens,

Implémentation simple

ok, jetons un coup d'œil à l'implémentation la plus simple : # 🎜 🎜#
import numpy as np
import random
class PSO_model:
    def __init__(self,w,c1,c2,r1,r2,N,D,M):
        self.w = w # 惯性权值
        self.c1=c1
        self.c2=c2
        self.r1=r1
        self.r2=r2
        self.N=N # 初始化种群数量个数
        self.D=D # 搜索空间维度
        self.M=M # 迭代的最大次数
        self.x=np.zeros((self.N,self.D))  #粒子的初始位置
        self.v=np.zeros((self.N,self.D))  #粒子的初始速度
        self.pbest=np.zeros((self.N,self.D))  #个体最优值初始化
        self.gbest=np.zeros((1,self.D))  #种群最优值
        self.p_fit=np.zeros(self.N)
        self.fit=1e8 #初始化全局最优适应度
# 目标函数,也是适应度函数(求最小化问题)
    def function(self,x):
        A = 10
        x1=x[0]
        x2=x[1]
        Z = 2 * A + x1 ** 2 - A * np.cos(2 * np.pi * x1) + x2 ** 2 - A * np.cos(2 * np.pi * x2)
        return Z
     # 初始化种群
    def init_pop(self):
        for i in range(self.N):
            for j in range(self.D):
                self.x[i][j] = random.random()
                self.v[i][j] = random.random()
            self.pbest[i] = self.x[i] # 初始化个体的最优值
            aim=self.function(self.x[i]) # 计算个体的适应度值
            self.p_fit[i]=aim # 初始化个体的最优位置
            if aim < self.fit:  # 对个体适应度进行比较,计算出最优的种群适应度
                self.fit = aim
                self.gbest = self.x[i]
    # 更新粒子的位置与速度
    def update(self):
        for t in range(self.M): # 在迭代次数M内进行循环
            for i in range(self.N): # 对所有种群进行一次循环
                aim=self.function(self.x[i]) # 计算一次目标函数的适应度
                if aim<self.p_fit[i]: # 比较适应度大小,将小的负值给个体最优
                    self.p_fit[i]=aim
                    self.pbest[i]=self.x[i]
                    if self.p_fit[i]<self.fit: # 如果是个体最优再将和全体最优进行对比
                        self.gbest=self.x[i]
                        self.fit = self.p_fit[i]
            for i in range(self.N): # 更新粒子的速度和位置
                self.v[i]=self.w*self.v[i]+self.c1*self.r1*(self.pbest[i]-self.x[i])+ self.c2*self.r2*(self.gbest-self.x[i])
                self.x[i]=self.x[i]+self.v[i]
        print("最优值:",self.fit,"位置为:",self.gbest)
if __name__ == &#39;__main__&#39;:
    # w,c1,c2,r1,r2,N,D,M参数初始化
    w=random.random()
    c1=c2=2#一般设置为2
    r1=0.7
    r2=0.5
    N=30
    D=2
    M=200
    pso_object=PSO_model(w,c1,c2,r1,r2,N,D,M)#设置初始权值
    pso_object.init_pop()
    pso_object.update()
Copier après la connexion

Solution au TSP

Représentation des données

Tout d'abord, l'utilisation du PSO est en fait similaire à notre utilisation précédente de la génétique Nous passons quand même un A. la matrice représente la population et une matrice représente la distance entre les villes.

      # 群体的初始化和路径的初始化
        self.population = np.array([0] * self.num_pop * self.num).reshape(
            self.num_pop, self.num)
        self.fitness = [0] * self.num_pop
        """
        计算城市的距离,我们用矩阵表示城市间的距离
        """
        self.__matrix_distance = self.__matrix_dis()
Copier après la connexion

DIFFERENCE

Quelle est la plus grande différence par rapport à notre PSO original En fait, il est simple et facile à mettre à jour avec notre rapidité ? Lorsque nous posons des questions continues, cela ressemble en fait à ceci :

Comment utiliser Python pour implémenter lalgorithme PSO afin de résoudre le problème TSP ?De même, nous pouvons utiliser X pour représenter le numéro de la ville, mais évidemment nous ne pouvons pas utilisez cette solution Effectuez des mises à jour rapides.

Donc à ce moment-là, lorsque nous mettons à jour la vitesse, nous devons utiliser une nouvelle solution. Cette solution est donc en fait la mise à jour X utilisant l'algorithme de calcul génétique. Pour le dire franchement, la raison pour laquelle nous avons besoin de vitesse est de mettre à jour X et de faire avancer X dans la bonne direction. Maintenant, il n'est plus possible d'utiliser simplement la mise à jour rapide, nous mettons donc à jour X de toute façon, alors pourquoi ne pas simplement choisir une solution qui peut bien mettre à jour ce X ? Par conséquent, la génétique peut être utilisée directement ici. Notre mise à jour rapide est basée sur Pbest et Gbest, puis « apprise » selon un certain poids, de cette façon, ce V a une « caractéristique » de Pbest et Gbest. Donc, si tel est le cas, alors lorsque j'imite directement le croisement génétique et que je le croise avec Best, ne puis-je pas apprendre certaines « caractéristiques » correspondantes ?

    def cross_1(self, path, best_path):
        r1 = np.random.randint(self.num)
        r2 = np.random.randint(self.num)
        while r2 == r1:
            r2 = np.random.randint(self.num)
        left, right = min(r1, r2), max(r1, r2)
        cross = best_path[left:right + 1]
        for i in range(right - left + 1):
            for k in range(self.num):
                if path[k] == cross[i]:
                    path[k:self.num - 1] = path[k + 1:self.num]
                    path[-1] = 0
        path[self.num - right + left - 1:self.num] = cross
        return path
Copier après la connexion

En même temps, on peut encore introduire des mutations.

    def mutation(self,path):
        r1 = np.random.randint(self.num)
        r2 = np.random.randint(self.num)
        while r2 == r1:
            r2 = np.random.randint(self.num)
        path[r1],path[r2] = path[r2],path[r1]
        return path
Copier après la connexion

Code complet

ok, voyons maintenant le code complet :

import numpy as np
import matplotlib.pyplot as plt
class HybridPsoTSP(object):
    def __init__(self ,data ,num_pop=200):
        self.num_pop = num_pop  # 群体个数
        self.data = data        # 城市坐标
        self.num =len(data)     # 城市个数
        # 群体的初始化和路径的初始化
        self.population = np.array([0] * self.num_pop * self.num).reshape(
            self.num_pop, self.num)
        self.fitness = [0] * self.num_pop
        """
        计算城市的距离,我们用矩阵表示城市间的距离
        """
        self.__matrix_distance = self.__matrix_dis()
    def __matrix_dis(self):
        """
        计算14个城市的距离,将这些距离用矩阵存起来
        :return:
        """
        res = np.zeros((self.num, self.num))
        for i in range(self.num):
            for j in range(i + 1, self.num):
                res[i, j] = np.linalg.norm(self.data[i, :] - self.data[j, :])
                res[j, i] = res[i, j]
        return res
    def cross_1(self, path, best_path):
        r1 = np.random.randint(self.num)
        r2 = np.random.randint(self.num)
        while r2 == r1:
            r2 = np.random.randint(self.num)
        left, right = min(r1, r2), max(r1, r2)
        cross = best_path[left:right + 1]
        for i in range(right - left + 1):
            for k in range(self.num):
                if path[k] == cross[i]:
                    path[k:self.num - 1] = path[k + 1:self.num]
                    path[-1] = 0
        path[self.num - right + left - 1:self.num] = cross
        return path
    def mutation(self,path):
        r1 = np.random.randint(self.num)
        r2 = np.random.randint(self.num)
        while r2 == r1:
            r2 = np.random.randint(self.num)
        path[r1],path[r2] = path[r2],path[r1]
        return path
    def comp_fit(self, one_path):
        """
        计算,咱们这个路径的长度,例如A-B-C-D
        :param one_path:
        :return:
        """
        res = 0
        for i in range(self.num - 1):
            res += self.__matrix_distance[one_path[i], one_path[i + 1]]
        res += self.__matrix_distance[one_path[-1], one_path[0]]
        return res
    def out_path(self, one_path):
        """
        输出我们的路径顺序
        :param one_path:
        :return:
        """
        res = str(one_path[0] + 1) + '-->'
        for i in range(1, self.num):
            res += str(one_path[i] + 1) + '-->'
        res += str(one_path[0] + 1) + '\n'
        print(res)
    def init_population(self):
        """
        初始化种群
        :return:
        """
        rand_ch = np.array(range(self.num))
        for i in range(self.num_pop):
            np.random.shuffle(rand_ch)
            self.population[i, :] = rand_ch
            self.fitness[i] = self.comp_fit(rand_ch)
def main(data, max_n=200, num_pop=200):
    Path_short = HybridPsoTSP(data, num_pop=num_pop)  # 混合粒子群算法类
    Path_short.init_population()  # 初始化种群
    # 初始化路径绘图
    fig, ax = plt.subplots()
    x = data[:, 0]
    y = data[:, 1]
    ax.scatter(x, y, linewidths=0.1)
    for i, txt in enumerate(range(1, len(data) + 1)):
        ax.annotate(txt, (x[i], y[i]))
    res0 = Path_short.population[0]
    x0 = x[res0]
    y0 = y[res0]
    for i in range(len(data) - 1):
        plt.quiver(x0[i], y0[i], x0[i + 1] - x0[i], y0[i + 1] - y0[i], color='r', width=0.005, angles='xy', scale=1,
                   scale_units='xy')
    plt.quiver(x0[-1], y0[-1], x0[0] - x0[-1], y0[0] - y0[-1], color='r', width=0.005, angles='xy', scale=1,
               scale_units='xy')
    plt.show()
    print('初始染色体的路程: ' + str(Path_short.fitness[0]))
    # 存储个体极值的路径和距离
    best_P_population = Path_short.population.copy()
    best_P_fit = Path_short.fitness.copy()
    min_index = np.argmin(Path_short.fitness)
    # 存储当前种群极值的路径和距离
    best_G_population = Path_short.population[min_index, :]
    best_G_fit = Path_short.fitness[min_index]
    # 存储每一步迭代后的最优路径和距离
    best_population = [best_G_population]
    best_fit = [best_G_fit]
    # 复制当前群体进行交叉变异
    x_new = Path_short.population.copy()
    for i in range(max_n):
        # 更新当前的个体极值
        for j in range(num_pop):
            if Path_short.fitness[j] < best_P_fit[j]:
                best_P_fit[j] = Path_short.fitness[j]
                best_P_population[j, :] = Path_short.population[j, :]
        # 更新当前种群的群体极值
        min_index = np.argmin(Path_short.fitness)
        best_G_population = Path_short.population[min_index, :]
        best_G_fit = Path_short.fitness[min_index]
        # 更新每一步迭代后的全局最优路径和解
        if best_G_fit < best_fit[-1]:
            best_fit.append(best_G_fit)
            best_population.append(best_G_population)
        else:
            best_fit.append(best_fit[-1])
            best_population.append(best_population[-1])
        # 将每个个体与个体极值和当前的群体极值进行交叉
        for j in range(num_pop):
            # 与个体极值交叉
            x_new[j, :] = Path_short.cross_1(x_new[j, :], best_P_population[j, :])
            fit = Path_short.comp_fit(x_new[j, :])
            # 判断是否保留
            if fit < Path_short.fitness[j]:
                Path_short.population[j, :] = x_new[j, :]
                Path_short.fitness[j] = fit
            # 与当前极值交叉
            x_new[j, :] = Path_short.cross_1(x_new[j, :], best_G_population)
            fit = Path_short.comp_fit(x_new[j, :])
            if fit < Path_short.fitness[j]:
                Path_short.population[j, :] = x_new[j, :]
                Path_short.fitness[j] = fit
            # 变异
            x_new[j, :] = Path_short.mutation(x_new[j, :])
            fit = Path_short.comp_fit(x_new[j, :])
            if fit <= Path_short.fitness[j]:
                Path_short.population[j] = x_new[j, :]
                Path_short.fitness[j] = fit
        if (i + 1) % 20 == 0:
            print('第' + str(i + 1) + '步后的最短的路程: ' + str(Path_short.fitness[min_index]))
            print('第' + str(i + 1) + '步后的最优路径:')
            Path_short.out_path(Path_short.population[min_index, :])  # 显示每一步的最优路径
    Path_short.best_population = best_population
    Path_short.best_fit = best_fit
    return Path_short  # 返回结果类
if __name__ == '__main__':
    data = np.array([16.47, 96.10, 16.47, 94.44, 20.09, 92.54,
                     22.39, 93.37, 25.23, 97.24, 22.00, 96.05, 20.47, 97.02,
                     17.20, 96.29, 16.30, 97.38, 14.05, 98.12, 16.53, 97.38,
                     21.52, 95.59, 19.41, 97.13, 20.09, 92.55]).reshape((14, 2))
    main(data)
Copier après la connexion

初始染色体的路程: 71.30211569672313
第20步后的最短的路程: 29.340520066994223
第20步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第40步后的最短的路程: 29.340520066994223
第40步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第60步后的最短的路程: 29.340520066994223
第60步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第80步后的最短的路程: 29.340520066994223
第80步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第100步后的最短的路程: 29.340520066994223
第100步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第120步后的最短的路程: 29.340520066994223
第120步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第140步后的最短的路程: 29.340520066994223
第140步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第160步后的最短的路程: 29.340520066994223
第160步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第180步后的最短的路程: 29.340520066994223
第180步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9
第200步后的最短的路程: 29.340520066994223
第200步后的最优路径:
9-->10-->1-->2-->14-->3-->4-->5-->6-->12-->7-->13-->8-->11-->9

可以看到收敛速度还是很快的。

特点分析

ok,到目前为止的话,我们介绍了两个算法去解决TSP或者是优化问题。我们来分析一下,这些算法有什么特点,为啥可以达到我们需要的优化效果。其实不管是遗传还是PSO,你其实都可以发现,有一个东西,我们可以暂且叫它环境压力。我们通过物竞天择,或者鸟类迁移,进行模拟寻优。而之所以需要这样做,是因为我们指定了一个规则,在我们的规则之下。我们让模拟的种群有一种压力去靠拢,其中物竞天择和鸟类迁移只是我们的一种手段,去应对这样的“压力”。所以的对于这种算法而言,最核心的点就两个:

设计环境压力

我们需要做优化问题,所以我们必须要能够让我们的解往那个方向走,需要一个驱动,需要一个压力。因此我们需要设计这样的一个环境,在遗传算法,粒子群算法是通过种群当中的生存,来进行设计的它的压力是我们的目标函数。由种群和目标函数(目标指标)构成了一个环境和压力。

设计压力策略

之后的话,我们设计好了一个环境和压力,那么未来应对这种压力,我们需要去设计一种策略,来应付这种压力。遗传算法是通过PUA自己,也就是种群的优胜略汰。PSO是通过学习,学习种群的优秀粒子和过去自己家的优秀“祖先”来应对这种压力的。

强化学习

所以的话,我们是否可以使用别的方案来实现这种优化效果。,在强化学习的算法框架里面的话,我们明确的知道了为什么他们可以实现优化,是环境压力+压力策略。恰好咱们强化学习是有环境的,适应函数和环境恰好可以组成环境+压力。本身的算法收敛过程就是我们的压力策略。所以我们完全是可以直接使用强化学习进行这个处理的。那么在这里咱们就来使用强化学习在下一篇文章当中。

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:yisu.com
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal