Table des matières
Introduction à la méthode
Résultats expérimentaux
Maison Périphériques technologiques IA La pré-formation ne nécessite aucune attention et la mise à l'échelle jusqu'à 4 096 jetons ne pose aucun problème, ce qui est comparable à BERT.

La pré-formation ne nécessite aucune attention et la mise à l'échelle jusqu'à 4 096 jetons ne pose aucun problème, ce qui est comparable à BERT.

May 08, 2023 pm 07:37 PM
模型 训练

Transformer, en tant qu'architecture de modèle de pré-formation PNL, peut apprendre efficacement sur des données non étiquetées à grande échelle. La recherche a prouvé que Transformer est l'architecture de base des tâches PNL depuis BERT.

Des travaux récents ont montré que les modèles spatiaux d'états (SSM) constituent une architecture concurrente favorable pour la modélisation de séquences à longue portée. SSM obtient des résultats de pointe en matière de génération de parole et de benchmarks Long Range Arena, encore meilleurs que l'architecture Transformer. En plus d'améliorer la précision, la couche de routage basée sur SSM ne présentera pas de complexité quadratique à mesure que la longueur de la séquence augmente.

Dans cet article, des chercheurs de l'Université Cornell, DeepMind et d'autres institutions ont proposé le SSM bidirectionnel (BiGS) pour un pré-entraînement sans attention. Il combine principalement le routage SSM avec une architecture de gating basée sur la multiplication (gating multiplicatif). L'étude a révélé que SSM en lui-même fonctionne mal en matière de pré-formation à la PNL, mais qu'une fois intégré dans une architecture multiplicative et fermée, la précision en aval s'améliore.

Les expériences montrent que BiGS est capable d'égaler les performances du modèle BERT lorsqu'il est formé sur les mêmes données dans des paramètres contrôlés. Avec un pré-entraînement supplémentaire sur des instances plus longues, le modèle maintient également un temps linéaire lors de la mise à l'échelle de la séquence d'entrée à 4 096. L'analyse montre que le déclenchement multiplicatif est nécessaire et résout certains problèmes spécifiques des modèles SSM sur les entrées de texte de longueur variable.

La pré-formation ne nécessite aucune attention et la mise à léchelle jusquà 4 096 jetons ne pose aucun problème, ce qui est comparable à BERT.

Adresse papier : https://arxiv.org/pdf/2212.10544.pdf

Introduction à la méthode

SSM saisira continuellement u (t) et sortira y (t) via ce qui suit équation différentielle ) sont connectées :

La pré-formation ne nécessite aucune attention et la mise à léchelle jusquà 4 096 jetons ne pose aucun problème, ce qui est comparable à BERT.

Pour les séquences discrètes, les paramètres SSM sont discrétisés, et le processus peut être approximé comme :

La pré-formation ne nécessite aucune attention et la mise à léchelle jusquà 4 096 jetons ne pose aucun problème, ce qui est comparable à BERT.

Cette équation peut être interprétée comme un RNN linéaire, où x_k est un état caché. y peut également être calculé à l'aide de convolutions :

La pré-formation ne nécessite aucune attention et la mise à léchelle jusquà 4 096 jetons ne pose aucun problème, ce qui est comparable à BERT.

Un moyen efficace d'utiliser SSM dans les réseaux de neurones a été démontré par Gu et al., qui ont développé une méthode pour paramétrer A, appelée HiPPO, qui produit une architecture stable et efficace. est appelé S4. Cela conserve la capacité du SSM à modéliser des séquences à long terme tout en étant plus efficace que la formation RNN. Récemment, des chercheurs ont proposé une version diagonalisée simplifiée de S4 qui permet d'obtenir des résultats similaires avec une approximation plus simple des paramètres d'origine. À un niveau élevé, le routage basé sur SSM offre une alternative à la modélisation de séquences dans des réseaux de neurones sans le coût attentionnel des calculs secondaires.

Architecture de modèle pré-entraînée

Le SSM peut-il remplacer l'attention lors de la pré-formation ? Pour répondre à cette question, cette étude considère deux architectures différentes, l'architecture empilée (STACK) et l'architecture fermée multiplicative (GATED) illustrée à la figure 1.

L'architecture empilée avec auto-attention est équivalente au modèle BERT/transformateur, et l'architecture fermée est une adaptation bidirectionnelle de l'unité fermée, qui a également été récemment utilisée pour le SSM unidirectionnel. 2 blocs de séquence (c'est-à-dire SSM avant et arrière) avec déclenchement multiplicatif sont pris en sandwich dans une couche à action directe. Pour une comparaison équitable, la taille de l’architecture fermée reste comparable à celle de l’architecture empilée.

La pré-formation ne nécessite aucune attention et la mise à léchelle jusquà 4 096 jetons ne pose aucun problème, ce qui est comparable à BERT.

Figure 1 : Variables du modèle. STACK est une architecture de transformateur standard et GATED est basée sur des unités de contrôle de porte. Pour le composant Routage (ligne pointillée), l’étude prend en compte à la fois le SSM bidirectionnel (illustré sur la figure) et l’auto-attention standard. Gated(X) représente la multiplication par élément.

Résultats expérimentaux

Pré-entraînement

Le tableau 1 présente les principaux résultats de différents modèles pré-entraînés sur le benchmark GLUE. BiGS reproduit la précision de BERT sur l'expansion des jetons. Ce résultat montre que SSM peut reproduire la précision du modèle de transformateur pré-entraîné avec un tel budget de calcul. Ces résultats sont nettement meilleurs que ceux d’autres modèles pré-entraînés non basés sur l’attention. Pour atteindre cette précision, un déclenchement multiplicatif est nécessaire. Sans gate, les résultats du SSM empilé sont bien pires. Pour examiner si cet avantage vient principalement de l'utilisation du gating, nous avons formé un modèle basé sur l'attention en utilisant l'architecture GATE. Cependant, les résultats montrent que le modèle est en réalité moins efficace que BERT ;

La pré-formation ne nécessite aucune attention et la mise à léchelle jusquà 4 096 jetons ne pose aucun problème, ce qui est comparable à BERT.

Tableau 1 : Résultats COLLE. (Haut) Comparaison de différentes architectures et routage sous paramètres de contrôle. Voir la figure 2 pour plus de détails. (En bas) a rapporté des résultats comparables pour d'autres modèles pré-entraînés sans attention basés sur CNN, LSTM et FNet.

Tâche longue

Tableau 2 Les résultats montrent que SSM peut être comparé à Longformer EncoderDecoder (LED) et BART, cependant, les résultats montrent qu'il fonctionne également bien dans les tâches à distance, même Encore mieux. SSM dispose de beaucoup moins de données de pré-entraînement que les deux autres méthodes. Même si SSM n’a pas besoin de se rapprocher de ces longueurs, la forme longue reste importante.

La pré-formation ne nécessite aucune attention et la mise à léchelle jusquà 4 096 jetons ne pose aucun problème, ce qui est comparable à BERT.

Tableau 2 : Résultats des tests de l'encodeur SCROLLS. Les modèles de base sont tous deux des modèles d'encodeur-décodeur, l'un basé sur Longformer (LED) et l'autre basé sur BART. La longueur saisie est tronquée.

Veuillez consulter le document original pour plus d'informations.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Open source! Au-delà de ZoeDepth ! DepthFM : estimation rapide et précise de la profondeur monoculaire ! Open source! Au-delà de ZoeDepth ! DepthFM : estimation rapide et précise de la profondeur monoculaire ! Apr 03, 2024 pm 12:04 PM

0. À quoi sert cet article ? Nous proposons DepthFM : un modèle d'estimation de profondeur monoculaire génératif de pointe, polyvalent et rapide. En plus des tâches traditionnelles d'estimation de la profondeur, DepthFM démontre également des capacités de pointe dans les tâches en aval telles que l'inpainting en profondeur. DepthFM est efficace et peut synthétiser des cartes de profondeur en quelques étapes d'inférence. Lisons ce travail ensemble ~ 1. Titre des informations sur l'article : DepthFM : FastMonocularDepthEstimationwithFlowMatching Auteur : MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Le modèle MoE open source le plus puissant au monde est ici, avec des capacités chinoises comparables à celles du GPT-4, et le prix ne représente que près d'un pour cent de celui du GPT-4-Turbo. Le modèle MoE open source le plus puissant au monde est ici, avec des capacités chinoises comparables à celles du GPT-4, et le prix ne représente que près d'un pour cent de celui du GPT-4-Turbo. May 07, 2024 pm 04:13 PM

Imaginez un modèle d'intelligence artificielle qui non seulement a la capacité de surpasser l'informatique traditionnelle, mais qui permet également d'obtenir des performances plus efficaces à moindre coût. Ce n'est pas de la science-fiction, DeepSeek-V2[1], le modèle MoE open source le plus puissant au monde est ici. DeepSeek-V2 est un puissant mélange de modèle de langage d'experts (MoE) présentant les caractéristiques d'une formation économique et d'une inférence efficace. Il est constitué de 236B paramètres, dont 21B servent à activer chaque marqueur. Par rapport à DeepSeek67B, DeepSeek-V2 offre des performances plus élevées, tout en économisant 42,5 % des coûts de formation, en réduisant le cache KV de 93,3 % et en augmentant le débit de génération maximal à 5,76 fois. DeepSeek est une entreprise explorant l'intelligence artificielle générale

L'IA bouleverse la recherche mathématique ! Le lauréat de la médaille Fields et mathématicien sino-américain a dirigé 11 articles les mieux classés | Aimé par Terence Tao L'IA bouleverse la recherche mathématique ! Le lauréat de la médaille Fields et mathématicien sino-américain a dirigé 11 articles les mieux classés | Aimé par Terence Tao Apr 09, 2024 am 11:52 AM

L’IA change effectivement les mathématiques. Récemment, Tao Zhexuan, qui a prêté une attention particulière à cette question, a transmis le dernier numéro du « Bulletin de l'American Mathematical Society » (Bulletin de l'American Mathematical Society). En se concentrant sur le thème « Les machines changeront-elles les mathématiques ? », de nombreux mathématiciens ont exprimé leurs opinions. L'ensemble du processus a été plein d'étincelles, intense et passionnant. L'auteur dispose d'une équipe solide, comprenant Akshay Venkatesh, lauréat de la médaille Fields, le mathématicien chinois Zheng Lejun, l'informaticien de l'Université de New York Ernest Davis et de nombreux autres universitaires bien connus du secteur. Le monde de l’IA a radicalement changé. Vous savez, bon nombre de ces articles ont été soumis il y a un an.

Bonjour, Atlas électrique ! Le robot Boston Dynamics revient à la vie, des mouvements étranges à 180 degrés effraient Musk Bonjour, Atlas électrique ! Le robot Boston Dynamics revient à la vie, des mouvements étranges à 180 degrés effraient Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas entre officiellement dans l’ère des robots électriques ! Hier, l'Atlas hydraulique s'est retiré "en larmes" de la scène de l'histoire. Aujourd'hui, Boston Dynamics a annoncé que l'Atlas électrique était au travail. Il semble que dans le domaine des robots humanoïdes commerciaux, Boston Dynamics soit déterminé à concurrencer Tesla. Après la sortie de la nouvelle vidéo, elle a déjà été visionnée par plus d’un million de personnes en seulement dix heures. Les personnes âgées partent et de nouveaux rôles apparaissent. C'est une nécessité historique. Il ne fait aucun doute que cette année est l’année explosive des robots humanoïdes. Les internautes ont commenté : Les progrès des robots ont fait ressembler la cérémonie d'ouverture de cette année à des êtres humains, et le degré de liberté est bien plus grand que celui des humains. Mais n'est-ce vraiment pas un film d'horreur ? Au début de la vidéo, Atlas est allongé calmement sur le sol, apparemment sur le dos. Ce qui suit est à couper le souffle

KAN, qui remplace MLP, a été étendu à la convolution par des projets open source KAN, qui remplace MLP, a été étendu à la convolution par des projets open source Jun 01, 2024 pm 10:03 PM

Plus tôt ce mois-ci, des chercheurs du MIT et d'autres institutions ont proposé une alternative très prometteuse au MLP – KAN. KAN surpasse MLP en termes de précision et d’interprétabilité. Et il peut surpasser le MLP fonctionnant avec un plus grand nombre de paramètres avec un très petit nombre de paramètres. Par exemple, les auteurs ont déclaré avoir utilisé KAN pour reproduire les résultats de DeepMind avec un réseau plus petit et un degré d'automatisation plus élevé. Plus précisément, le MLP de DeepMind compte environ 300 000 paramètres, tandis que le KAN n'en compte qu'environ 200. KAN a une base mathématique solide comme MLP est basé sur le théorème d'approximation universelle, tandis que KAN est basé sur le théorème de représentation de Kolmogorov-Arnold. Comme le montre la figure ci-dessous, KAN a

La vitalité de la super intelligence s'éveille ! Mais avec l'arrivée de l'IA qui se met à jour automatiquement, les mères n'ont plus à se soucier des goulots d'étranglement des données. La vitalité de la super intelligence s'éveille ! Mais avec l'arrivée de l'IA qui se met à jour automatiquement, les mères n'ont plus à se soucier des goulots d'étranglement des données. Apr 29, 2024 pm 06:55 PM

Je pleure à mort. Le monde construit à la folie de grands modèles. Les données sur Internet ne suffisent pas du tout. Le modèle de formation ressemble à « The Hunger Games », et les chercheurs en IA du monde entier se demandent comment nourrir ces personnes avides de données. Ce problème est particulièrement important dans les tâches multimodales. À une époque où rien ne pouvait être fait, une équipe de start-up du département de l'Université Renmin de Chine a utilisé son propre nouveau modèle pour devenir la première en Chine à faire de « l'auto-alimentation des données générées par le modèle » une réalité. De plus, il s’agit d’une approche à deux volets, du côté compréhension et du côté génération, les deux côtés peuvent générer de nouvelles données multimodales de haute qualité et fournir un retour de données au modèle lui-même. Qu'est-ce qu'un modèle ? Awaker 1.0, un grand modèle multimodal qui vient d'apparaître sur le Forum Zhongguancun. Qui est l'équipe ? Moteur Sophon. Fondé par Gao Yizhao, doctorant à la Hillhouse School of Artificial Intelligence de l’Université Renmin.

La version Kuaishou de Sora 'Ke Ling' est ouverte aux tests : génère plus de 120 s de vidéo, comprend mieux la physique et peut modéliser avec précision des mouvements complexes La version Kuaishou de Sora 'Ke Ling' est ouverte aux tests : génère plus de 120 s de vidéo, comprend mieux la physique et peut modéliser avec précision des mouvements complexes Jun 11, 2024 am 09:51 AM

Quoi? Zootopie est-elle concrétisée par l’IA domestique ? Avec la vidéo est exposé un nouveau modèle de génération vidéo domestique à grande échelle appelé « Keling ». Sora utilise une voie technique similaire et combine un certain nombre d'innovations technologiques auto-développées pour produire des vidéos qui comportent non seulement des mouvements larges et raisonnables, mais qui simulent également les caractéristiques du monde physique et possèdent de fortes capacités de combinaison conceptuelle et d'imagination. Selon les données, Keling prend en charge la génération de vidéos ultra-longues allant jusqu'à 2 minutes à 30 ips, avec des résolutions allant jusqu'à 1080p, et prend en charge plusieurs formats d'image. Un autre point important est que Keling n'est pas une démo ou une démonstration de résultats vidéo publiée par le laboratoire, mais une application au niveau produit lancée par Kuaishou, un acteur leader dans le domaine de la vidéo courte. De plus, l'objectif principal est d'être pragmatique, de ne pas faire de chèques en blanc et de se mettre en ligne dès sa sortie. Le grand modèle de Ke Ling est déjà sorti à Kuaiying.

Les robots Tesla travaillent dans les usines, Musk : Le degré de liberté des mains atteindra 22 cette année ! Les robots Tesla travaillent dans les usines, Musk : Le degré de liberté des mains atteindra 22 cette année ! May 06, 2024 pm 04:13 PM

La dernière vidéo du robot Optimus de Tesla est sortie, et il peut déjà fonctionner en usine. À vitesse normale, il trie les batteries (les batteries 4680 de Tesla) comme ceci : Le responsable a également publié à quoi cela ressemble à une vitesse 20 fois supérieure - sur un petit "poste de travail", en sélectionnant et en sélectionnant et en sélectionnant : Cette fois, il est publié L'un des points forts de la vidéo est qu'Optimus réalise ce travail en usine, de manière totalement autonome, sans intervention humaine tout au long du processus. Et du point de vue d'Optimus, il peut également récupérer et placer la batterie tordue, en se concentrant sur la correction automatique des erreurs : concernant la main d'Optimus, le scientifique de NVIDIA Jim Fan a donné une évaluation élevée : la main d'Optimus est l'un des robots à cinq doigts du monde. le plus adroit. Ses mains ne sont pas seulement tactiles

See all articles