mysql优化limit查询语句的5个方法_MySQL
mysql的分页比较简单,只需要limit offset,length就可以获取数据了,但是当offset和length比较大的时候,mysql明显性能下降
1.子查询优化法
先找出第一条数据,然后大于等于这条数据的id就是要获取的数据
缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性,具体方法请看下面的查询实例:
复制代码 代码如下:
mysql> set profiling=1;
Query OK, 0 rows affected (0.00 sec)
mysql> select count(*) from Member;
+----------+
| count(*) |
+----------+
| 169566 |
+----------+
1 row in set (0.00 sec)
mysql> pager grep !~-
PAGER set to 'grep !~-'
mysql> select * from Member limit 10, 100;
100 rows in set (0.00 sec)
mysql> select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100;
100 rows in set (0.00 sec)
mysql> select * from Member limit 1000, 100;
100 rows in set (0.01 sec)
mysql> select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100;
100 rows in set (0.00 sec)
mysql> select * from Member limit 100000, 100;
100 rows in set (0.10 sec)
mysql> select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100;
100 rows in set (0.02 sec)
mysql> nopager
PAGER set to stdout
mysql> show profiles/G
*************************** 1. row ***************************
Query_ID: 1
Duration: 0.00003300
Query: select count(*) from Member
*************************** 2. row ***************************
Query_ID: 2
Duration: 0.00167000
Query: select * from Member limit 10, 100
*************************** 3. row ***************************
Query_ID: 3
Duration: 0.00112400
Query: select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100
*************************** 4. row ***************************
Query_ID: 4
Duration: 0.00263200
Query: select * from Member limit 1000, 100
*************************** 5. row ***************************
Query_ID: 5
Duration: 0.00134000
Query: select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100
*************************** 6. row ***************************
Query_ID: 6
Duration: 0.09956700
Query: select * from Member limit 100000, 100
*************************** 7. row ***************************
Query_ID: 7
Duration: 0.02447700
Query: select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100
从结果中可以得知,当偏移1000以上使用子查询法可以有效的提高性能。
2.倒排表优化法
倒排表法类似建立索引,用一张表来维护页数,然后通过高效的连接得到数据
缺点:只适合数据数固定的情况,数据不能删除,维护页表困难
倒排表介绍:(而倒排索引具称是搜索引擎的算法基石)
倒排表是指存放在内存中的能够追加倒排记录的倒排索引。倒排表是迷你的倒排索引。
临时倒排文件是指存放在磁盘中,以文件的形式存储的不能够追加倒排记录的倒排索引。临时倒排文件是中等规模的倒排索引。
最终倒排文件是指由存放在磁盘中,以文件的形式存储的临时倒排文件归并得到的倒排索引。最终倒排文件是较大规模的倒排索引。
倒排索引作为抽象概念,而倒排表、临时倒排文件、最终倒排文件是倒排索引的三种不同的表现形式。
3.反向查找优化法
当偏移超过一半记录数的时候,先用排序,这样偏移就反转了
缺点:order by优化比较麻烦,要增加索引,索引影响数据的修改效率,并且要知道总记录数 ,偏移大于数据的一半
limit偏移算法:
正向查找: (当前页 - 1) * 页长度
反向查找: 总记录 - 当前页 * 页长度
做下实验,看看性能如何
总记录数:1,628,775
每页记录数: 40
总页数:1,628,775 / 40 = 40720
中间页数:40720 / 2 = 20360
第21000页
正向查找SQL:
复制代码 代码如下:SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 839960, 40
时间:1.8696 秒
反向查找sql:
复制代码 代码如下:SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 788775, 40
时间:1.8336 秒
第30000页
正向查找SQL:
复制代码 代码如下:SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40
时间:2.6493 秒
反向查找sql:
复制代码 代码如下:SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40
时间:1.0035 秒
注意,反向查找的结果是是降序desc的,并且InputDate是记录的插入时间,也可以用主键联合索引,但是不方便。
4.limit限制优化法
把limit偏移量限制低于某个数。。超过这个数等于没数据,我记得alibaba的dba说过他们是这样做的
5.只查索引法
MySQL的limit工作原理就是先读取n条记录,然后抛弃前n条,读m条想要的,所以n越大,性能会越差。
优化前SQL:
复制代码 代码如下:SELECT * FROM member ORDER BY last_active LIMIT 50,5
优化后SQL:
复制代码 代码如下:SELECT * FROM member INNER JOIN (SELECT member_id FROM member ORDER BY last_active LIMIT 50, 5) USING (member_id)
区别在于,优化前的SQL需要更多I/O浪费,因为先读索引,再读数据,然后抛弃无需的行。而优化后的SQL(子查询那条)只读索引(Cover index)就可以了,然后通过member_id读取需要的列。
总结:limit的优化限制都比较多,所以实际情况用或者不用只能具体情况具体分析了。页数那么后,基本很少人看的。。。

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

La numérisation complète de la table peut être plus rapide dans MySQL que l'utilisation d'index. Les cas spécifiques comprennent: 1) le volume de données est petit; 2) Lorsque la requête renvoie une grande quantité de données; 3) Lorsque la colonne d'index n'est pas très sélective; 4) Lorsque la requête complexe. En analysant les plans de requête, en optimisant les index, en évitant le sur-index et en maintenant régulièrement des tables, vous pouvez faire les meilleurs choix dans les applications pratiques.

Les capacités de recherche en texte intégral d'InNODB sont très puissantes, ce qui peut considérablement améliorer l'efficacité de la requête de la base de données et la capacité de traiter de grandes quantités de données de texte. 1) INNODB implémente la recherche de texte intégral via l'indexation inversée, prenant en charge les requêtes de recherche de base et avancées. 2) Utilisez la correspondance et contre les mots clés pour rechercher, prendre en charge le mode booléen et la recherche de phrases. 3) Les méthodes d'optimisation incluent l'utilisation de la technologie de segmentation des mots, la reconstruction périodique des index et l'ajustement de la taille du cache pour améliorer les performances et la précision.

Oui, MySQL peut être installé sur Windows 7, et bien que Microsoft ait cessé de prendre en charge Windows 7, MySQL est toujours compatible avec lui. Cependant, les points suivants doivent être notés lors du processus d'installation: téléchargez le programme d'installation MySQL pour Windows. Sélectionnez la version appropriée de MySQL (communauté ou entreprise). Sélectionnez le répertoire d'installation et le jeu de caractères appropriés pendant le processus d'installation. Définissez le mot de passe de l'utilisateur racine et gardez-le correctement. Connectez-vous à la base de données pour les tests. Notez les problèmes de compatibilité et de sécurité sur Windows 7, et il est recommandé de passer à un système d'exploitation pris en charge.

La différence entre l'index cluster et l'index non cluster est: 1. Index en cluster stocke les lignes de données dans la structure d'index, ce qui convient à la requête par clé et plage primaire. 2. L'index non clumpant stocke les valeurs de clé d'index et les pointeurs vers les lignes de données, et convient aux requêtes de colonne de clés non primaires.

MySQL est un système de gestion de base de données relationnel open source. 1) Créez une base de données et des tables: utilisez les commandes CreateDatabase et CreateTable. 2) Opérations de base: insérer, mettre à jour, supprimer et sélectionner. 3) Opérations avancées: jointure, sous-requête et traitement des transactions. 4) Compétences de débogage: vérifiez la syntaxe, le type de données et les autorisations. 5) Suggestions d'optimisation: utilisez des index, évitez de sélectionner * et utilisez les transactions.

Dans la base de données MySQL, la relation entre l'utilisateur et la base de données est définie par les autorisations et les tables. L'utilisateur a un nom d'utilisateur et un mot de passe pour accéder à la base de données. Les autorisations sont accordées par la commande Grant, tandis que le tableau est créé par la commande Create Table. Pour établir une relation entre un utilisateur et une base de données, vous devez créer une base de données, créer un utilisateur, puis accorder des autorisations.

MySQL prend en charge quatre types d'index: B-Tree, hachage, texte intégral et spatial. 1. L'indice de tree B est adapté à la recherche de valeur égale, à la requête de plage et au tri. 2. L'indice de hachage convient aux recherches de valeur égale, mais ne prend pas en charge la requête et le tri des plages. 3. L'index de texte complet est utilisé pour la recherche en texte intégral et convient pour le traitement de grandes quantités de données de texte. 4. L'indice spatial est utilisé pour la requête de données géospatiaux et convient aux applications SIG.

MySQL et MARIADB peuvent coexister, mais doivent être configurés avec prudence. La clé consiste à allouer différents numéros de port et répertoires de données à chaque base de données et ajuster les paramètres tels que l'allocation de mémoire et la taille du cache. La mise en commun de la connexion, la configuration des applications et les différences de version doivent également être prises en compte et doivent être soigneusement testées et planifiées pour éviter les pièges. L'exécution de deux bases de données simultanément peut entraîner des problèmes de performances dans les situations où les ressources sont limitées.
