


Quelles sont les techniques pour améliorer l'efficacité d'exécution de Python ?
Avant de commencer, vous pouvez d'abord développer un décorateur Python qui compte le temps d'exécution des fonctions, qui sera utilisé plus tard pour les statistiques de temps après avoir utilisé diverses techniques Python.
# 导入时间提取的time模块 from time import time import dis def compute_time(func_): ''' 计算函数的运行时间 ''' def func_time(*arg, **kw): t1 = time() result = func_(*arg, **kw) t2 = time() print(f"{func_.__name__: >10} : {t2 - t1:.6f} 秒") return result return func_time
Nous avons développé la fonction de calcul du temps computation_time ci-dessus. Nous pouvons développer une fonction hello_world pour tester si elle est utilisée normalement.
@compute_time def hello_world(): print("hello_world!") hello_world() # hello_world! # hello_world : 0.000000 秒
Grâce au test de la fonction hello_world, il est prouvé que notre décorateur de temps calculate_time peut normalement calculer le temps d'exécution de la fonction.
Ensuite, nous commençons à présenter formellement les cinq façons suivantes pour améliorer la vitesse d'exécution de Python et fournir des résultats d'exécution dans le temps.
1. Utilisation raisonnable des bibliothèques standard ou non standard
Vous ne devez pas sous-estimer les bibliothèques standard ou non standard de Python pendant le processus de développement. Pour être honnête, les mêmes blocs de code métier que nous écrivons parfois ne sont pas aussi parfaits que les grands. les gars.
Par exemple, dans l'activité suivante, nous devons convertir les valeurs d'une liste python en chaînes. Tout d'abord, regardez comment le bloc de code suivant est écrit.
# 初始化一个list列表 list_ = ['a', 'b', 'c'] * 10000 @compute_time def func_1(list_=None): ''' 列表元素转字符串函数 ''' str_ = '' for s in list_: str_ = str_ + s return str_ func_1(list_) # func_1 : 0.001999 秒
Utiliser la méthode traditionnelle écrite par moi-même pour convertir les étapes via l'exécution de la fonction func_1 ci-dessus est plus compliquée et prend 0,001999 seconde.
@compute_time def func_2(list_=None): ''' 列表元素转字符串 ''' return ''.join(list_) func_2(list_) # func_2 : 0.000000 秒
Par rapport au temps d'exécution de la fonction func_1, le temps d'exécution de func_2 est presque négligeable et la décimale à six chiffres ne voit aucun changement.
2. Réduire l'utilisation des boucles
En fait, nous avons découvert à partir du processus de développement normal que les méthodes de traitement de données sérialisables utilisant la dérivation de liste, l'itération, etc. sont plus pratiques et efficaces que les boucles for.
Ci-dessous, nous pouvons également utiliser un exemple pour illustrer le problème. Par exemple, nous devons sélectionner un nombre dans une liste qui est divisible par 2.
# 初始化循环次数n n = 100000 @compute_time def func_3(n=None): list_ = [] for m in range(n): if m % 2 == 0: list_.append(m) return list_ @compute_time def func_4(n=None): return [m for m in range(n) if m % 2 == 0] func_3(n) func_4(n) # func_3 : 0.004986 秒 # func_4 : 0.003014 秒
Grâce à la comparaison de la fonction func_3 et de la fonction func_4, tout d'abord, la méthode de func_4 est beaucoup plus simple que celle de func_3.
Et en termes de temps, func_4 utilise la dérivation de liste pour s'exécuter 1/4 plus vite que la boucle for ordinaire.
3. Faites attention à l'exécution répétée du code
En ce qui concerne l'exécution répétée du code, nous pouvons tous en faire l'expérience dans nos méthodes de développement habituelles, c'est-à-dire qu'il peut être exécuté une fois en tant que bloc de code public.
Vous pouvez ajouter des blocs de code pouvant être utilisés publiquement dans la boucle, ce qui n'affectera que l'efficacité d'exécution des blocs de code.
Par exemple, nous devons utiliser le module re de python pour rechercher certains éléments dans une chaîne. Voici deux façons de comparer les résultats temporels.
# 导入正则表达式匹配模块 import re @compute_time def func_5(str_=None): for s in str_: result = re.search(r'a*[a-z]?c', s) @compute_time def func_6(str_=None): repx = re.compile(r'a*[a-z]?c') for s in str_: result = repx.search(s) func_5('abcdefg1234oks' * 1000) func_6('abcdefg1234oks' * 1000) # func_5 : 0.006999 秒 # func_6 : 0.002000 秒
En comparant les méthodes d'implémentation commerciale de func_5 et func_6, nous avons placé l'objet correspondant régulier de compilation du module re directement dans la couche externe de la boucle for, et le temps d'exécution a été directement réduit de plus de 3 fois.
En effet, l'utilisation de la recherche pour faire correspondre des objets normaux directement dans la boucle créera en permanence des objets correspondants réguliers dans la boucle, ce qui augmente la charge de traitement de la boucle for et entraîne un ralentissement de la vitesse.
mes_1 = 'ss1' mes_2 = 'ss2' mes_3 = 'ss3' @compute_time def func_7(): result = mes_1 + mes_2 + mes_3 return result @compute_time def func_8(): me_1 = 'ss1' me_2 = 'ss2' me_3 = 'ss3' result = me_1 + me_2 + me_3 return result func_7() func_8() # func_7 : 0.000997 秒 # func_8 : 0.000000 秒
@compute_time def func_9(): data = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] print(data[3]) @compute_time def func_10(): data = ('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h') print(data[3]) func_9() func_10() # func_9 : 0.000000 秒 # func_10 : 0.000000 秒
print('func_9汇编产生的机器码:') dis.dis(func_9) print('func_10汇编产生的机器码:') dis.dis(func_10)
# func_9汇编产生的机器码: # 30 0 LOAD_GLOBAL 0 (time) # 2 CALL_FUNCTION 0 # 4 STORE_FAST 2 (t1) # # 31 6 LOAD_DEREF 0 (func_) # 8 LOAD_FAST 0 (arg) # 10 LOAD_FAST 1 (kw) # 12 CALL_FUNCTION_EX 1 # 14 STORE_FAST 3 (result) # # 32 16 LOAD_GLOBAL 0 (time) # 18 CALL_FUNCTION 0 # 20 STORE_FAST 4 (t2) # # 33 22 LOAD_GLOBAL 1 (print) # 24 LOAD_DEREF 0 (func_) # 26 LOAD_ATTR 2 (__name__) # 28 LOAD_CONST 1 (' >10') # 30 FORMAT_VALUE 4 (with format) # 32 LOAD_CONST 2 (' : ') # 34 LOAD_FAST 4 (t2) # 36 LOAD_FAST 2 (t1) # 38 BINARY_SUBTRACT # 40 LOAD_CONST 3 ('.6f') # 42 FORMAT_VALUE 4 (with format) # 44 LOAD_CONST 4 (' 秒') # 46 BUILD_STRING 4 # 48 CALL_FUNCTION 1 # 50 POP_TOP # # 34 52 LOAD_FAST 3 (result) # 54 RETURN_VALUE # func_10汇编产生的机器码: # 30 0 LOAD_GLOBAL 0 (time) # 2 CALL_FUNCTION 0 # 4 STORE_FAST 2 (t1) # # 31 6 LOAD_DEREF 0 (func_) # 8 LOAD_FAST 0 (arg) # 10 LOAD_FAST 1 (kw) # 12 CALL_FUNCTION_EX 1 # 14 STORE_FAST 3 (result)
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

L'article présente le fonctionnement de la base de données MySQL. Tout d'abord, vous devez installer un client MySQL, tel que MySQLWorkBench ou le client de ligne de commande. 1. Utilisez la commande MySQL-UROot-P pour vous connecter au serveur et connecter avec le mot de passe du compte racine; 2. Utilisez Createdatabase pour créer une base de données et utilisez Sélectionner une base de données; 3. Utilisez CreateTable pour créer une table, définissez des champs et des types de données; 4. Utilisez InsertInto pour insérer des données, remettre en question les données, mettre à jour les données par mise à jour et supprimer les données par Supprimer. Ce n'est qu'en maîtrisant ces étapes, en apprenant à faire face à des problèmes courants et à l'optimisation des performances de la base de données que vous pouvez utiliser efficacement MySQL.

Les principales raisons de la défaillance de l'installation de MySQL sont les suivantes: 1. Problèmes d'autorisation, vous devez s'exécuter en tant qu'administrateur ou utiliser la commande sudo; 2. Des dépendances sont manquantes et vous devez installer des packages de développement pertinents; 3. Conflits du port, vous devez fermer le programme qui occupe le port 3306 ou modifier le fichier de configuration; 4. Le package d'installation est corrompu, vous devez télécharger et vérifier l'intégrité; 5. La variable d'environnement est mal configurée et les variables d'environnement doivent être correctement configurées en fonction du système d'exploitation. Résolvez ces problèmes et vérifiez soigneusement chaque étape pour installer avec succès MySQL.

Le fichier de téléchargement mysql est corrompu, que dois-je faire? Hélas, si vous téléchargez MySQL, vous pouvez rencontrer la corruption des fichiers. Ce n'est vraiment pas facile ces jours-ci! Cet article expliquera comment résoudre ce problème afin que tout le monde puisse éviter les détours. Après l'avoir lu, vous pouvez non seulement réparer le package d'installation MySQL endommagé, mais aussi avoir une compréhension plus approfondie du processus de téléchargement et d'installation pour éviter de rester coincé à l'avenir. Parlons d'abord de la raison pour laquelle le téléchargement des fichiers est endommagé. Il y a de nombreuses raisons à cela. Les problèmes de réseau sont le coupable. L'interruption du processus de téléchargement et l'instabilité du réseau peut conduire à la corruption des fichiers. Il y a aussi le problème avec la source de téléchargement elle-même. Le fichier serveur lui-même est cassé, et bien sûr, il est également cassé si vous le téléchargez. De plus, la numérisation excessive "passionnée" de certains logiciels antivirus peut également entraîner une corruption des fichiers. Problème de diagnostic: déterminer si le fichier est vraiment corrompu

MySQL peut s'exécuter sans connexions réseau pour le stockage et la gestion des données de base. Cependant, la connexion réseau est requise pour l'interaction avec d'autres systèmes, l'accès à distance ou l'utilisation de fonctionnalités avancées telles que la réplication et le clustering. De plus, les mesures de sécurité (telles que les pare-feu), l'optimisation des performances (choisissez la bonne connexion réseau) et la sauvegarde des données sont essentielles pour se connecter à Internet.

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

MySQL a refusé de commencer? Ne paniquez pas, vérifions-le! De nombreux amis ont découvert que le service ne pouvait pas être démarré après avoir installé MySQL, et ils étaient si anxieux! Ne vous inquiétez pas, cet article vous emmènera pour le faire face calmement et découvrez le cerveau derrière! Après l'avoir lu, vous pouvez non seulement résoudre ce problème, mais aussi améliorer votre compréhension des services MySQL et vos idées de problèmes de dépannage, et devenir un administrateur de base de données plus puissant! Le service MySQL n'a pas réussi et il y a de nombreuses raisons, allant des erreurs de configuration simples aux problèmes système complexes. Commençons par les aspects les plus courants. Connaissances de base: une brève description du processus de démarrage du service MySQL Service Startup. Autrement dit, le système d'exploitation charge les fichiers liés à MySQL, puis démarre le démon mysql. Cela implique la configuration

L'optimisation des performances MySQL doit commencer à partir de trois aspects: configuration d'installation, indexation et optimisation des requêtes, surveillance et réglage. 1. Après l'installation, vous devez ajuster le fichier my.cnf en fonction de la configuration du serveur, tel que le paramètre innodb_buffer_pool_size, et fermer query_cache_size; 2. Créez un index approprié pour éviter les index excessifs et optimiser les instructions de requête, telles que l'utilisation de la commande Explication pour analyser le plan d'exécution; 3. Utilisez le propre outil de surveillance de MySQL (ShowProcessList, Showstatus) pour surveiller la santé de la base de données, et sauvegarde régulièrement et organisez la base de données. Ce n'est qu'en optimisant en continu ces étapes que les performances de la base de données MySQL peuvent être améliorées.
