Comment faire du développement de deep learning en PHP ?
Avec le développement de l’intelligence artificielle, l’apprentissage profond est devenu actuellement l’une des technologies les plus populaires et les plus avant-gardistes. En tant que puissant algorithme d’apprentissage automatique, l’apprentissage profond a été largement utilisé et développé dans la reconnaissance d’images, le traitement du langage naturel, la reconnaissance vocale et d’autres domaines. Ici, nous allons explorer comment réaliser le développement d’apprentissage profond en PHP.
1. Cadre d'apprentissage profond en PHP
Les cadres d'apprentissage profond courants actuels incluent principalement TensorFlow, Keras, PyTorch, etc. Ils fournissent diverses méthodes et outils de mise en œuvre d'apprentissage profond pour aider les développeurs à créer des modèles d'apprentissage profond plus facilement. En PHP, nous pouvons implémenter l'apprentissage en profondeur via TensorFlow.js. L'implémentation spécifique est la suivante.
- Installer TensorFlow.js
Nous devons d'abord installer TensorFlow.js via npm, ce qui peut être réalisé via la commande suivante.
npm install @tensorflow/tfjs
- Créez un modèle d'apprentissage profond simple
Ci-dessous, nous utilisons un exemple simple pour présenter comment implémenter l'apprentissage profond en PHP. Disons que nous avons un ensemble de données simple avec des données d'entrée et de sortie.
$input_data = [[0, 0], [0, 1], [1, 0], [1, 1]]; $output_data = [[0], [1], [1], [0]];
Nous pouvons utiliser TensorFlow.js pour créer un modèle de réseau neuronal simple, le code est le suivant.
use TensorFlowJSConverterSave; use TensorFlowJSOptimizerAdam; use TensorFlowJSModelsSequential; use TensorFlowJSLayersDense; $model = new Sequential(); $model->add(new Dense(['inputShape' => [2], 'units' => 4, 'activation' => 'sigmoid'])); $model->add(new Dense(['units' => 1, 'activation' => 'sigmoid'])); $model->compile(['optimizer' => new Adam(['lr' => 0.1]), 'loss' => 'binaryCrossentropy', 'metrics' => ['accuracy']]); $model->fit(tensor($input_data), tensor($output_data), ['epochs' => 1000, 'verbose' => 1]);
Dans cet exemple, nous utilisons un réseau neuronal à 2 couches, qui comprend une couche d'entrée et une couche de sortie, chaque couche possède 4 neurones. La dimension des données d'entrée est [2], et nous utilisons la fonction d'activation sigmoïde pour activer les neurones. Lors de la phase de compilation du modèle, nous avons utilisé l'optimiseur Adam et la fonction de perte d'entropie croisée, et avons spécifié la précision comme métrique. Enfin, nous utilisons la fonction fit() pour entraîner le modèle et définir 1000 époques.
- Prédire le modèle
Après avoir terminé la formation du modèle, nous pouvons l'utiliser pour prédire de nouvelles données. Vous trouverez ci-dessous le code permettant de faire des prédictions sur de nouvelles données.
$new_data = [[0, 0], [0, 1], [1, 0], [1, 1]]; $predictions = $model->predict(tensor($new_data)); $predictions = $predictions->arraySync(); foreach ($predictions as $prediction) { echo $prediction[0] . "<br>"; }
Dans le code ci-dessus, nous utilisons la fonction prédire () pour prédire de nouvelles données et stocker les résultats de la prédiction dans la variable $predictions. Enfin, nous utilisons la fonction arraySync() pour convertir les résultats de la prédiction en un tableau simple et le générer.
2. Conclusion
Cet article présente le processus de base du développement du deep learning en PHP. En utilisant TensorFlow.js, nous pouvons facilement créer, former et évaluer des modèles d'apprentissage profond tout en faisant des prédictions sur de nouvelles données. Dans les applications pratiques, nous pouvons utiliser de manière flexible divers algorithmes et technologies d'apprentissage automatique en fonction de besoins et de situations spécifiques pour améliorer encore l'efficacité et l'effet de l'apprentissage profond.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP 8.4 apporte plusieurs nouvelles fonctionnalités, améliorations de sécurité et de performances avec une bonne quantité de dépréciations et de suppressions de fonctionnalités. Ce guide explique comment installer PHP 8.4 ou mettre à niveau vers PHP 8.4 sur Ubuntu, Debian ou leurs dérivés. Bien qu'il soit possible de compiler PHP à partir des sources, son installation à partir d'un référentiel APT comme expliqué ci-dessous est souvent plus rapide et plus sécurisée car ces référentiels fourniront les dernières corrections de bogues et mises à jour de sécurité à l'avenir.

Visual Studio Code, également connu sous le nom de VS Code, est un éditeur de code source gratuit – ou environnement de développement intégré (IDE) – disponible pour tous les principaux systèmes d'exploitation. Avec une large collection d'extensions pour de nombreux langages de programmation, VS Code peut être c

Si vous êtes un développeur PHP expérimenté, vous aurez peut-être le sentiment d'y être déjà allé et de l'avoir déjà fait. Vous avez développé un nombre important d'applications, débogué des millions de lignes de code et peaufiné de nombreux scripts pour réaliser des opérations.

Ce tutoriel montre comment traiter efficacement les documents XML à l'aide de PHP. XML (Language de balisage extensible) est un langage de balisage basé sur le texte polyvalent conçu à la fois pour la lisibilité humaine et l'analyse de la machine. Il est couramment utilisé pour le stockage de données et

JWT est une norme ouverte basée sur JSON, utilisée pour transmettre en toute sécurité des informations entre les parties, principalement pour l'authentification de l'identité et l'échange d'informations. 1. JWT se compose de trois parties: en-tête, charge utile et signature. 2. Le principe de travail de JWT comprend trois étapes: la génération de JWT, la vérification de la charge utile JWT et l'analyse. 3. Lorsque vous utilisez JWT pour l'authentification en PHP, JWT peut être généré et vérifié, et les informations sur le rôle et l'autorisation des utilisateurs peuvent être incluses dans l'utilisation avancée. 4. Les erreurs courantes incluent une défaillance de vérification de signature, l'expiration des jetons et la charge utile surdimensionnée. Les compétences de débogage incluent l'utilisation des outils de débogage et de l'exploitation forestière. 5. L'optimisation des performances et les meilleures pratiques incluent l'utilisation des algorithmes de signature appropriés, la définition des périodes de validité raisonnablement,

Une chaîne est une séquence de caractères, y compris des lettres, des nombres et des symboles. Ce tutoriel apprendra à calculer le nombre de voyelles dans une chaîne donnée en PHP en utilisant différentes méthodes. Les voyelles en anglais sont a, e, i, o, u, et elles peuvent être en majuscules ou en minuscules. Qu'est-ce qu'une voyelle? Les voyelles sont des caractères alphabétiques qui représentent une prononciation spécifique. Il y a cinq voyelles en anglais, y compris les majuscules et les minuscules: a, e, i, o, u Exemple 1 Entrée: String = "TutorialSpoint" Sortie: 6 expliquer Les voyelles dans la chaîne "TutorialSpoint" sont u, o, i, a, o, i. Il y a 6 yuans au total

Liaison statique (statique: :) implémente la liaison statique tardive (LSB) dans PHP, permettant à des classes d'appel d'être référencées dans des contextes statiques plutôt que de définir des classes. 1) Le processus d'analyse est effectué au moment de l'exécution, 2) Recherchez la classe d'appel dans la relation de succession, 3) il peut apporter des frais généraux de performance.

Quelles sont les méthodes magiques de PHP? Les méthodes magiques de PHP incluent: 1. \ _ \ _ Construct, utilisé pour initialiser les objets; 2. \ _ \ _ Destruct, utilisé pour nettoyer les ressources; 3. \ _ \ _ Appel, gérer les appels de méthode inexistants; 4. \ _ \ _ GET, Implémentez l'accès à l'attribut dynamique; 5. \ _ \ _ SET, Implémentez les paramètres d'attribut dynamique. Ces méthodes sont automatiquement appelées dans certaines situations, améliorant la flexibilité et l'efficacité du code.
