


Comment générer rapidement des requêtes.txt pour ce projet en Python
Dans les projets Python, nous devons généralement utiliser de nombreuses bibliothèques tierces pour fournir des fonctions et des outils supplémentaires. Cependant, télécharger ces bibliothèques directement dans le dépôt Git n’est pas une bonne pratique, car cela rendrait la base de code trop volumineuse et difficile à gérer. De plus, vous devez parfois installer des versions spécifiques de dépendances lors du déploiement de votre application.
À ce stade, vous pouvez utiliser le fichier exigences.txt pour gérer les dépendances requises par le projet. Ce fichier répertorie toutes les dépendances requises par le projet ainsi que leurs numéros de version, ce qui permet aux autres d'installer et d'exécuter facilement toutes les dépendances requises pour le projet. La lecture de ce fichier à l'aide de la commande pip télécharge et installe automatiquement toutes les dépendances répertoriées, ce qui simplifie grandement le processus de démarrage/déploiement du projet.
Par conséquent, générer le fichier exigences.txt est très important pour gérer les dépendances des projets Python, ce qui peut assurer la reproductibilité, la portabilité et la maintenabilité du projet.
1. Utilisez pipreqs pour générer des exigences.txt
Ouvrez le terminal dans le répertoire racine du projet et exécutez la commande suivante pour installer pipreqs :
pip install pipreqs
Exécutez la commande suivante pour générer le fichier exigences.txt :
pipreqs . --encoding=utf8 --force
où, . représente le répertoire actuel, –encoding=utf8 spécifie le codage en UTF-8 et l'option –force force l'écrasement du fichier Requirements.txt existant.
Une fois l'exécution terminée, vous pouvez voir le fichier Requirements.txt généré dans le répertoire racine du projet.
2. Utilisation de pip
Pour utiliser pip pour générer le fichier requis.txt pour le projet Python actuel, veuillez suivre ces étapes :
1. Assurez-vous d'avoir installé pip et un environnement virtuel.
2. Ouvrez le terminal dans l'environnement virtuel et entrez le répertoire racine du projet.
3. Exécutez la commande suivante pour générer un fichier conditions.txt contenant toutes les dépendances :
pip freeze > requirements.txt
Après l'exécution, vous pouvez voir un fichier texte nommé exigences.txt dans le répertoire racine du projet, où Contient toutes les dépendances. et leurs numéros de version.
Il convient de noter que la commande pip freeze affichera tous les packages installés et leurs informations de version sur la console. Le fichier Requirements.txt peut être généré en écrivant les résultats de sortie dans un fichier à l'aide du symbole de redirection >. Cependant, ce fichier peut contenir des dépendances inutiles, telles que des bibliothèques et des outils de test fournis avec le système. Par conséquent, lors de l'utilisation du fichier requis.txt généré, il est recommandé de vérifier et de supprimer manuellement les dépendances inutiles pour réduire la taille du projet.
Ce qui suit est le fichier requis.txt généré. Vous pouvez voir que de nombreuses dépendances inutiles sont générées
absl-py==1.0.0 addict==2.4.0 aiohttp==3.7.4.post0 alembic==1.8.1 argon2-cffi @ file:///opt/conda/conda-bld/argon2-cffi_1645000214183/work argon2-cffi-bindings @ file:///C:/ci/argon2-cffi-bindings_1644569848815/work astunparse==1.6.3 async-timeout==3.0.1 attrs @ file:///opt/conda/conda-bld/attrs_1642510447205/work backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work beautifulsoup4 @ file:///tmp/build/80754af9/beautifulsoup4_1631874778482/work bilibili-api==5.1.2 bleach @ file:///opt/conda/conda-bld/bleach_1641577558959/work blinker==1.5 cachetools==5.0.0 certifi @ file:///C:/b/abs_85o_6fm0se/croot/certifi_1671487778835/work/certifi cffi @ file:///C:/ci_310/cffi_1642682485096/work chardet==4.0.0 charset-normalizer==2.0.12 click @ file:///C:/ci/click_1646038601470/work cloudpickle @ file:///tmp/build/80754af9/cloudpickle_1632508026186/work colorama @ file:///tmp/build/80754af9/colorama_1607707115595/work cryptography @ file:///C:/ci/cryptography_1652101770956/work cycler==0.11.0 cytoolz==0.11.0 dask==1.1.4 debugpy @ file:///C:/ci/debugpy_1637091911212/work decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work defusedxml @ file:///tmp/build/80754af9/defusedxml_1615228127516/work dnspython==2.3.0 docopt==0.6.2 einops==0.4.1 email-validator==1.3.1 entrypoints==0.3 fastjsonschema @ file:///tmp/build/80754af9/python-fastjsonschema_1620414857593/work/dist Flask==2.2.3 Flask-Email==1.4.4 Flask-Mail==0.9.1 Flask-Migrate==3.1.0 Flask-Script==2.0.6 Flask-SQLAlchemy @ file:///tmp/build/80754af9/flask-sqlalchemy_1616180561581/work Flask-WTF==1.1.1 flatbuffers==23.1.21 fonttools==4.30.0 fvcore==0.1.5.post20220305 gast==0.4.0 google-auth==2.6.5 google-auth-oauthlib==0.4.6 google-pasta==0.2.0 greenlet @ file:///C:/ci/greenlet_1628888257991/work grpcio==1.45.0 grpcio-tools==1.45.0 h6py @ file:///C:/ci/h6py_1659089886851/work idna==3.3 imagecodecs @ file:///C:/ci/imagecodecs_1635529223557/work imageio @ file:///tmp/build/80754af9/imageio_1617700267927/work importlib-metadata @ file:///C:/ci/importlib-metadata_1648562631189/work importlib-resources==5.9.0 iopath==0.1.9 ipykernel @ file:///C:/ci/ipykernel_1647000985174/work/dist/ipykernel-6.9.1-py3-none-any.whl ipython @ file:///C:/ci/ipython_1643800131373/work ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work ipywidgets @ file:///tmp/build/80754af9/ipywidgets_1634143127070/work itsdangerous @ file:///tmp/build/80754af9/itsdangerous_1621432558163/work jedi @ file:///C:/ci/jedi_1644297241925/work Jinja2 @ file:///C:/b/abs_7cdis66kl9/croot/jinja2_1666908141852/work joblib @ file:///C:/b/abs_e60_bwl1v6/croot/joblib_1666298845728/work jsonschema @ file:///Users/ktietz/demo/mc3/conda-bld/jsonschema_1630511932244/work jupyter==1.0.0 jupyter-client @ file:///opt/conda/conda-bld/jupyter_client_1643638337975/work jupyter-console @ file:///opt/conda/conda-bld/jupyter_console_1647002188872/work jupyter-core @ file:///C:/ci/jupyter_core_1646976467633/work jupyterlab-pygments @ file:///tmp/build/80754af9/jupyterlab_pygments_1601490720602/work jupyterlab-widgets @ file:///tmp/build/80754af9/jupyterlab_widgets_1609884341231/work keras==2.11.0 kiwisolver @ file:///C:/ci/kiwisolver_1653274189334/work labelme==3.16.7 libclang==15.0.6.1 loguru @ file:///C:/ci/loguru_1643616607274/work lxml==4.6.5 Mako==1.2.2 Markdown==3.3.6 MarkupSafe @ file:///C:/ci/markupsafe_1654508076077/work matplotlib==3.5.1 matplotlib-inline @ file:///tmp/build/80754af9/matplotlib-inline_1628242447089/work mistune @ file:///C:/ci/mistune_1594373272338/work mkl-fft==1.3.1 mkl-random @ file:///C:/ci/mkl_random_1626186163140/work mkl-service==2.4.0 mmcv==1.6.2 multidict==6.0.2 nbclient @ file:///tmp/build/80754af9/nbclient_1645431659072/work nbconvert @ file:///C:/ci/nbconvert_1649759177374/work nbformat @ file:///C:/ci/nbformat_1649845122517/work nest-asyncio @ file:///C:/ci/nest-asyncio_1649848126026/work networkx==2.2 notebook @ file:///C:/ci/notebook_1645002740769/work numpy @ file:///C:/ci/numpy_and_numpy_base_1649782933444/work oauthlib==3.2.0 opencv-python==4.5.5.64 openslide-python==1.2.0 opt-einsum==3.3.0 packaging @ file:///tmp/build/80754af9/packaging_1637314298585/work pandas==1.3.5 pandocfilters @ file:///opt/conda/conda-bld/pandocfilters_1643405455980/work parso @ file:///opt/conda/conda-bld/parso_1641458642106/work pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work Pillow==9.0.1 pipreqs==0.4.11 portalocker==2.4.0 prettytable==3.3.0 prometheus-client @ file:///opt/conda/conda-bld/prometheus_client_1643788673601/work prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1633440160888/work protobuf==3.19.6 pyasn1==0.4.8 pyasn1-modules==0.2.8 pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work pyecharts==1.9.1 pygame==2.2.0 Pygments @ file:///opt/conda/conda-bld/pygments_1644249106324/work PyMySQL @ file:///C:/ci/pymysql_1610464946597/work pyparsing==3.0.7 PyQt5-Qt5==5.15.2 PyQt5-sip==12.9.1 pyrsistent @ file:///C:/ci/pyrsistent_1636093257833/work pytesseract==0.3.10 python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work pytz @ file:///C:/Windows/TEMP/abs_90eacd4e-8eff-491e-b26e-f707eba2cbe1ujvbhqz1/croots/recipe/pytz_1654762631027/work PyWavelets @ file:///C:/ci/pywavelets_1648728036674/work pywin32==302 pywinpty @ file:///C:/ci_310/pywinpty_1644230983541/work/target/wheels/pywinpty-2.0.2-cp37-none-win_amd64.whl PyYAML==6.0 pyzmq @ file:///C:/ci/pyzmq_1638435182681/work qtconsole @ file:///opt/conda/conda-bld/qtconsole_1649078897110/work QtPy @ file:///opt/conda/conda-bld/qtpy_1649073884068/work regex==2022.10.31 requests==2.27.1 requests-oauthlib==1.3.1 rsa==4.8 scikit-image @ file:///C:/ci/scikit-image_1648196140109/work scikit-learn @ file:///C:/ci/scikit-learn_1642599122269/work scipy @ file:///C:/ci/scipy_1641555141383/work seaborn==0.11.2 Send2Trash @ file:///tmp/build/80754af9/send2trash_1632406701022/work sip==4.19.13 six @ file:///tmp/build/80754af9/six_1644875935023/work soupsieve @ file:///tmp/build/80754af9/soupsieve_1636706018808/work SQLAlchemy @ file:///C:/Windows/Temp/abs_f8661157-660b-49bb-a790-69ab9f3b8f7c8a8s2psb/croots/recipe/sqlalchemy_1657867864564/work tabulate==0.8.9 tensorboard==2.11.2 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.1 tensorflow==2.11.0 tensorflow-estimator==2.11.0 tensorflow-intel==2.11.0 tensorflow-io-gcs-filesystem==0.31.0 termcolor==1.1.0 terminado @ file:///C:/ci/terminado_1644322782754/work testpath @ file:///tmp/build/80754af9/testpath_1624638946665/work thop==0.0.31.post2005241907 threadpoolctl @ file:///Users/ktietz/demo/mc3/conda-bld/threadpoolctl_1629802263681/work tifffile @ file:///tmp/build/80754af9/tifffile_1627275862826/work timm==0.6.7 toolz @ file:///tmp/build/80754af9/toolz_1636545406491/work torch==1.9.1+cu102 torchaudio==0.9.1 torchmetrics==0.9.3 torchstat==0.0.7 torchvision==0.10.1+cu102 tornado @ file:///C:/ci/tornado_1606935947090/work tqdm==4.63.0 traitlets @ file:///tmp/build/80754af9/traitlets_1636710298902/work typing_extensions @ file:///opt/conda/conda-bld/typing_extensions_1647553014482/work urllib3==1.26.9 wcwidth @ file:///Users/ktietz/demo/mc3/conda-bld/wcwidth_1629357192024/work webencodings==0.5.1 Werkzeug==2.2.3 widgetsnbextension @ file:///C:/ci/widgetsnbextension_1645009553925/work win32-setctime @ file:///home/tkoch/Workspace/win32_setctime/win32_setctime_1643630045199/work wincertstore==0.2 wrapt==1.15.0 WTForms==3.0.1 xlwt==1.3.0 yacs==0.1.8 yapf==0.32.0 yarg==0.1.9 yarl==1.7.2 zipp @ file:///C:/ci/zipp_1652274072582/work
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

VS Code est le code Visual Studio Nom complet, qui est un éditeur de code multiplateforme gratuit et open source et un environnement de développement développé par Microsoft. Il prend en charge un large éventail de langages de programmation et fournit une mise en surbrillance de syntaxe, une complétion automatique du code, des extraits de code et des invites intelligentes pour améliorer l'efficacité de développement. Grâce à un écosystème d'extension riche, les utilisateurs peuvent ajouter des extensions à des besoins et des langues spécifiques, tels que les débogueurs, les outils de mise en forme de code et les intégrations GIT. VS Code comprend également un débogueur intuitif qui aide à trouver et à résoudre rapidement les bogues dans votre code.

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.
