Kafka est une plateforme de traitement de flux open source développée par Apache Software Foundation et écrite en Scala et Java. Kafka est un système de messagerie de publication-abonnement distribué à haut débit qui peut gérer toutes les données d'action en streaming des consommateurs sur le site Web. De telles actions (navigation sur le Web, recherches et autres actions des utilisateurs) constituent un facteur clé dans de nombreuses fonctions sociales sur le Web moderne. Ces données sont généralement traitées par le traitement des journaux et l'agrégation des journaux en raison des exigences de débit. Il s'agit d'une solution viable pour les systèmes de données de journaux et d'analyse hors ligne comme Hadoop, mais avec les contraintes du traitement en temps réel. L'objectif de Kafka est d'unifier le traitement des messages en ligne et hors ligne via le mécanisme de chargement parallèle de Hadoop et de fournir des messages en temps réel via le cluster.
Système de messagerie : Kafka et les systèmes de messagerie traditionnels (également appelés middleware de messages) disposent tous deux d'un découplage du système, d'un stockage redondant, d'un écrêtage des pics de trafic, d'une mise en mémoire tampon, d'une communication asynchrone, d'une évolutivité et d'une capacité de récupération, ainsi que d'autres fonctions. Dans le même temps, Kafka offre également une garantie de séquence de messages et des fonctions de consommation rétroactive difficiles à réaliser dans la plupart des systèmes de messagerie.
Système de stockage : Kafka conserve les messages sur le disque, ce qui réduit efficacement le risque de perte de données par rapport à d'autres systèmes basés sur le stockage en mémoire. C'est précisément grâce à la fonction de persistance des messages et au mécanisme de copie multiple de Kafka que nous pouvons utiliser Kafka comme système de stockage de données à long terme. Il suffit de définir la politique de conservation des données correspondante sur « permanente » ou d'activer la fonction de compression des journaux du sujet. C'est ça.
Plateforme de traitement de streaming : Kafka fournit non seulement une source de données fiable pour chaque framework de streaming populaire, mais fournit également une bibliothèque complète de traitement de streaming, telle que le fonctionnement des fenêtres, des connexions, des transformations, des agrégations, etc.
Jetons un coup d'œil au code détaillé de SpringBoot intégrant la classe d'outils Kafka.
pom.xml
<dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>3.12.0</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>2.6.3</version> </dependency> <dependency> <groupId>fastjson</groupId> <artifactId>fastjson</artifactId> <version>1.2.83</version> </dependency>
Outils
package com.bbl.demo.utils; import org.apache.commons.lang3.exception.ExceptionUtils; import org.apache.kafka.clients.admin.*; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.common.KafkaFuture; import org.apache.kafka.common.errors.TopicExistsException; import org.apache.kafka.common.errors.UnknownTopicOrPartitionException; import com.alibaba.fastjson.JSONObject; import java.time.Duration; import java.util.*; import java.util.concurrent.ExecutionException; public class KafkaUtils { private static AdminClient admin; /** * 私有静态方法,创建Kafka生产者 * @author o * @return KafkaProducer */ private static KafkaProducer<String, String> createProducer() { Properties props = new Properties(); //声明kafka的地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"node01:9092,node02:9092,node03:9092"); //0、1 和 all:0表示只要把消息发送出去就返回成功;1表示只要Leader收到消息就返回成功;all表示所有副本都写入数据成功才算成功 props.put("acks", "all"); //重试次数 props.put("retries", Integer.MAX_VALUE); //批处理的字节数 props.put("batch.size", 16384); //批处理的延迟时间,当批次数据未满之时等待的时间 props.put("linger.ms", 1); //用来约束KafkaProducer能够使用的内存缓冲的大小的,默认值32MB props.put("buffer.memory", 33554432); // properties.put("value.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); // properties.put("key.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); return new KafkaProducer<String, String>(props); } /** * 私有静态方法,创建Kafka消费者 * @author o * @return KafkaConsumer */ private static KafkaConsumer<String, String> createConsumer() { Properties props = new Properties(); //声明kafka的地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"node01:9092,node02:9092,node03:9092"); //每个消费者分配独立的消费者组编号 props.put("group.id", "111"); //如果value合法,则自动提交偏移量 props.put("enable.auto.commit", "true"); //设置多久一次更新被消费消息的偏移量 props.put("auto.commit.interval.ms", "1000"); //设置会话响应的时间,超过这个时间kafka可以选择放弃消费或者消费下一条消息 props.put("session.timeout.ms", "30000"); //自动重置offset props.put("auto.offset.reset","earliest"); // properties.put("value.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); // properties.put("key.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); return new KafkaConsumer<String, String>(props); } /** * 私有静态方法,创建Kafka集群管理员对象 * @author o */ public static void createAdmin(String servers){ Properties props = new Properties(); props.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,servers); admin = AdminClient.create(props); } /** * 私有静态方法,创建Kafka集群管理员对象 * @author o * @return AdminClient */ private static void createAdmin(){ createAdmin("node01:9092,node02:9092,node03:9092"); } /** * 传入kafka约定的topic,json格式字符串,发送给kafka集群 * @author o * @param topic * @param jsonMessage */ public static void sendMessage(String topic, String jsonMessage) { KafkaProducer<String, String> producer = createProducer(); producer.send(new ProducerRecord<String, String>(topic, jsonMessage)); producer.close(); } /** * 传入kafka约定的topic消费数据,用于测试,数据最终会输出到控制台上 * @author o * @param topic */ public static void consume(String topic) { KafkaConsumer<String, String> consumer = createConsumer(); consumer.subscribe(Arrays.asList(topic)); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(100)); for (ConsumerRecord<String, String> record : records){ System.out.printf("offset = %d, key = %s, value = %s",record.offset(), record.key(), record.value()); System.out.println(); } } } /** * 传入kafka约定的topic数组,消费数据 * @author o * @param topics */ public static void consume(String ... topics) { KafkaConsumer<String, String> consumer = createConsumer(); consumer.subscribe(Arrays.asList(topics)); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(100)); for (ConsumerRecord<String, String> record : records){ System.out.printf("offset = %d, key = %s, value = %s",record.offset(), record.key(), record.value()); System.out.println(); } } } /** * 传入kafka约定的topic,json格式字符串数组,发送给kafka集群 * 用于批量发送消息,性能较高。 * @author o * @param topic * @param jsonMessages * @throws InterruptedException */ public static void sendMessage(String topic, String... jsonMessages) throws InterruptedException { KafkaProducer<String, String> producer = createProducer(); for (String jsonMessage : jsonMessages) { producer.send(new ProducerRecord<String, String>(topic, jsonMessage)); } producer.close(); } /** * 传入kafka约定的topic,Map集合,内部转为json发送给kafka集群 <br> * 用于批量发送消息,性能较高。 * @author o * @param topic * @param mapMessageToJSONForArray */ public static void sendMessage(String topic, List<Map<Object, Object>> mapMessageToJSONForArray) { KafkaProducer<String, String> producer = createProducer(); for (Map<Object, Object> mapMessageToJSON : mapMessageToJSONForArray) { String array = JSONObject.toJSON(mapMessageToJSON).toString(); producer.send(new ProducerRecord<String, String>(topic, array)); } producer.close(); } /** * 传入kafka约定的topic,Map,内部转为json发送给kafka集群 * @author o * @param topic * @param mapMessageToJSON */ public static void sendMessage(String topic, Map<Object, Object> mapMessageToJSON) { KafkaProducer<String, String> producer = createProducer(); String array = JSONObject.toJSON(mapMessageToJSON).toString(); producer.send(new ProducerRecord<String, String>(topic, array)); producer.close(); } /** * 创建主题 * @author o * @param name 主题的名称 * @param numPartitions 主题的分区数 * @param replicationFactor 主题的每个分区的副本因子 */ public static void createTopic(String name,int numPartitions,int replicationFactor){ if(admin == null) { createAdmin(); } Map<String, String> configs = new HashMap<>(); CreateTopicsResult result = admin.createTopics(Arrays.asList(new NewTopic(name, numPartitions, (short) replicationFactor).configs(configs))); //以下内容用于判断创建主题的结果 for (Map.Entry<String, KafkaFuture<Void>> entry : result.values().entrySet()) { try { entry.getValue().get(); System.out.println("topic "+entry.getKey()+" created"); } catch (InterruptedException | ExecutionException e) { if (ExceptionUtils.getRootCause(e) instanceof TopicExistsException) { System.out.println("topic "+entry.getKey()+" existed"); } } } } /** * 删除主题 * @author o * @param names 主题的名称 */ public static void deleteTopic(String name,String ... names){ if(admin == null) { createAdmin(); } Map<String, String> configs = new HashMap<>(); Collection<String> topics = Arrays.asList(names); topics.add(name); DeleteTopicsResult result = admin.deleteTopics(topics); //以下内容用于判断删除主题的结果 for (Map.Entry<String, KafkaFuture<Void>> entry : result.values().entrySet()) { try { entry.getValue().get(); System.out.println("topic "+entry.getKey()+" deleted"); } catch (InterruptedException | ExecutionException e) { if (ExceptionUtils.getRootCause(e) instanceof UnknownTopicOrPartitionException) { System.out.println("topic "+entry.getKey()+" not exist"); } } } } /** * 查看主题详情 * @author o * @param names 主题的名称 */ public static void describeTopic(String name,String ... names){ if(admin == null) { createAdmin(); } Map<String, String> configs = new HashMap<>(); Collection<String> topics = Arrays.asList(names); topics.add(name); DescribeTopicsResult result = admin.describeTopics(topics); //以下内容用于显示主题详情的结果 for (Map.Entry<String, KafkaFuture<TopicDescription>> entry : result.values().entrySet()) { try { entry.getValue().get(); System.out.println("topic "+entry.getKey()+" describe"); System.out.println("\t name: "+entry.getValue().get().name()); System.out.println("\t partitions: "); entry.getValue().get().partitions().stream().forEach(p-> { System.out.println("\t\t index: "+p.partition()); System.out.println("\t\t\t leader: "+p.leader()); System.out.println("\t\t\t replicas: "+p.replicas()); System.out.println("\t\t\t isr: "+p.isr()); }); System.out.println("\t internal: "+entry.getValue().get().isInternal()); } catch (InterruptedException | ExecutionException e) { if (ExceptionUtils.getRootCause(e) instanceof UnknownTopicOrPartitionException) { System.out.println("topic "+entry.getKey()+" not exist"); } } } } /** * 查看主题列表 * @author o * @return Set<String> TopicList */ public static Set<String> listTopic(){ if(admin == null) { createAdmin(); } ListTopicsResult result = admin.listTopics(); try { result.names().get().stream().map(x->x+"\t").forEach(System.out::print); return result.names().get(); } catch (InterruptedException | ExecutionException e) { e.printStackTrace(); return null; } } public static void main(String[] args) { System.out.println(listTopic()); } }
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!