Table des matières
1.spring-kafka
2. Informations relatives au fichier de configuration
3.classe de configuration kafka
4.
Maison Java javaDidacticiel Exemple de code pour le projet Springboot pour configurer plusieurs kafka

Exemple de code pour le projet Springboot pour configurer plusieurs kafka

May 14, 2023 pm 12:28 PM
springboot kafka

1.spring-kafka

<dependency>
   <groupId>org.springframework.kafka</groupId>
   <artifactId>spring-kafka</artifactId>
   <version>1.3.5.RELEASE</version>
</dependency>
Copier après la connexion

2. Informations relatives au fichier de configuration

kafka.bootstrap-servers=localhost:9092
kafka.consumer.group.id=20230321
#可以并发消费的线程数 (通常与partition数量一致)
kafka.consumer.concurrency=10
kafka.consumer.enable.auto.commit=false
        
kafka.bootstrap-servers.pic=localhost:29092
kafka.consumer.group.id.pic=20230322_pic
kafka.consumer.concurrency.pic=10
kafka.consumer.enable.auto.commit.pic=false
Copier après la connexion

3.classe de configuration kafka

@Configuration
@EnableKafka
public class KafkaConsumerConfig {

    @Value("${kafka.consumer.group.id}")
    private String groupId;

    @Value("${kafka.consumer.concurrency}")
    private int concurrency;

    @Value("${kafka.consumer.enable.auto.commit}")
    private String autoCommit;

    @Value("${kafka.bootstrap-servers}")
    private String bootstrapServer;


    @Value("${kafka.consumer.group.id.pic}")
    private String groupIdPic;

    @Value("${kafka.consumer.concurrency.pic}")
    private int concurrencyPic;

    @Value("${kafka.consumer.enable.auto.commit.pic}")
    private String autoCommitPic;

    @Value("${kafka.bootstrap-servers.pic}")
    private String bootstrapServerPic;


    @Bean
    public ConsumerFactory<String, String> consumerFactory() {
        String bootstrapServers = bootstrapServer;
        Map<String, Object> configProps = new HashMap<>(16);
        configProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        configProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        configProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        configProps.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        configProps.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, autoCommit);
        return new DefaultKafkaConsumerFactory<>(configProps);
    }

 
    @Bean
    public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<String, String> factory =
                new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(concurrency);
        factory.getContainerProperties().setAckMode(AbstractMessageListenerContainer.AckMode.MANUAL_IMMEDIATE);
        return factory;
    }




    @Bean
    public ConsumerFactory<String, String> consumerFactoryPic() {
        String bootstrapServers = bootstrapServerPic;
        Map<String, Object> configProps = new HashMap<>(16);
        configProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
        configProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        configProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        configProps.put(ConsumerConfig.GROUP_ID_CONFIG, groupIdPic);
        configProps.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, autoCommitPic);
        return new DefaultKafkaConsumerFactory<>(configProps);
    }


    @Bean
    public ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactoryPic() {
        ConcurrentKafkaListenerContainerFactory<String, String> factory =
                new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactoryPic());
        factory.setConcurrency(concurrencyPic);
        factory.getContainerProperties().setAckMode(AbstractMessageListenerContainer.AckMode.MANUAL_IMMEDIATE);
        return factory;
    }
}
Copier après la connexion

4.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment mettre en œuvre une analyse boursière en temps réel à l'aide de PHP et Kafka Comment mettre en œuvre une analyse boursière en temps réel à l'aide de PHP et Kafka Jun 28, 2023 am 10:04 AM

Avec le développement d’Internet et de la technologie, l’investissement numérique est devenu un sujet de préoccupation croissant. De nombreux investisseurs continuent d’explorer et d’étudier des stratégies d’investissement, dans l’espoir d’obtenir un retour sur investissement plus élevé. Dans le domaine du trading d'actions, l'analyse boursière en temps réel est très importante pour la prise de décision, et l'utilisation de la file d'attente de messages en temps réel Kafka et de la technologie PHP constitue un moyen efficace et pratique. 1. Introduction à Kafka Kafka est un système de messagerie distribué de publication et d'abonnement à haut débit développé par LinkedIn. Les principales fonctionnalités de Kafka sont

Comparaison et analyse des différences entre SpringBoot et SpringMVC Comparaison et analyse des différences entre SpringBoot et SpringMVC Dec 29, 2023 am 11:02 AM

SpringBoot et SpringMVC sont tous deux des frameworks couramment utilisés dans le développement Java, mais il existe des différences évidentes entre eux. Cet article explorera les fonctionnalités et les utilisations de ces deux frameworks et comparera leurs différences. Tout d’abord, découvrons SpringBoot. SpringBoot a été développé par l'équipe Pivotal pour simplifier la création et le déploiement d'applications basées sur le framework Spring. Il fournit un moyen rapide et léger de créer des fichiers exécutables autonomes.

Cinq sélections d'outils de visualisation pour explorer Kafka Cinq sélections d'outils de visualisation pour explorer Kafka Feb 01, 2024 am 08:03 AM

Cinq options pour les outils de visualisation Kafka ApacheKafka est une plateforme de traitement de flux distribué capable de traiter de grandes quantités de données en temps réel. Il est largement utilisé pour créer des pipelines de données en temps réel, des files d'attente de messages et des applications basées sur des événements. Les outils de visualisation de Kafka peuvent aider les utilisateurs à surveiller et gérer les clusters Kafka et à mieux comprendre les flux de données Kafka. Ce qui suit est une introduction à cinq outils de visualisation Kafka populaires : ConfluentControlCenterConfluent

Tutoriel pratique de développement SpringBoot+Dubbo+Nacos Tutoriel pratique de développement SpringBoot+Dubbo+Nacos Aug 15, 2023 pm 04:49 PM

Cet article écrira un exemple détaillé pour parler du développement réel de dubbo+nacos+Spring Boot. Cet article ne couvrira pas trop de connaissances théoriques, mais écrira l'exemple le plus simple pour illustrer comment dubbo peut être intégré à nacos pour créer rapidement un environnement de développement.

Analyse comparative des outils de visualisation kafka : Comment choisir l'outil le plus approprié ? Analyse comparative des outils de visualisation kafka : Comment choisir l'outil le plus approprié ? Jan 05, 2024 pm 12:15 PM

Comment choisir le bon outil de visualisation Kafka ? Analyse comparative de cinq outils Introduction : Kafka est un système de file d'attente de messages distribué à haute performance et à haut débit, largement utilisé dans le domaine du Big Data. Avec la popularité de Kafka, de plus en plus d'entreprises et de développeurs ont besoin d'un outil visuel pour surveiller et gérer facilement les clusters Kafka. Cet article présentera cinq outils de visualisation Kafka couramment utilisés et comparera leurs caractéristiques et fonctions pour aider les lecteurs à choisir l'outil qui répond à leurs besoins. 1. KafkaManager

Comment créer des applications de traitement de données en temps réel à l'aide de React et Apache Kafka Comment créer des applications de traitement de données en temps réel à l'aide de React et Apache Kafka Sep 27, 2023 pm 02:25 PM

Comment utiliser React et Apache Kafka pour créer des applications de traitement de données en temps réel Introduction : Avec l'essor du Big Data et du traitement de données en temps réel, la création d'applications de traitement de données en temps réel est devenue la priorité de nombreux développeurs. La combinaison de React, un framework front-end populaire, et d'Apache Kafka, un système de messagerie distribué hautes performances, peut nous aider à créer des applications de traitement de données en temps réel. Cet article expliquera comment utiliser React et Apache Kafka pour créer des applications de traitement de données en temps réel, et

Comment installer Apache Kafka sur Rocky Linux ? Comment installer Apache Kafka sur Rocky Linux ? Mar 01, 2024 pm 10:37 PM

Pour installer ApacheKafka sur RockyLinux, vous pouvez suivre les étapes suivantes : Mettre à jour le système : Tout d'abord, assurez-vous que votre système RockyLinux est à jour, exécutez la commande suivante pour mettre à jour les packages système : sudoyumupdate Installer Java : ApacheKafka dépend de Java, vous vous devez d'abord installer JavaDevelopmentKit (JDK). OpenJDK peut être installé via la commande suivante : sudoyuminstalljava-1.8.0-openjdk-devel Télécharger et décompresser : Visitez le site officiel d'ApacheKafka () pour télécharger le dernier package binaire. Choisissez une version stable

La pratique du go-zero et Kafka+Avro : construire un système de traitement de données interactif performant La pratique du go-zero et Kafka+Avro : construire un système de traitement de données interactif performant Jun 23, 2023 am 09:04 AM

Ces dernières années, avec l'essor du Big Data et des communautés open source actives, de plus en plus d'entreprises ont commencé à rechercher des systèmes de traitement de données interactifs hautes performances pour répondre aux besoins croissants en matière de données. Dans cette vague de mises à niveau technologiques, le go-zero et Kafka+Avro suscitent l’attention et sont adoptés par de plus en plus d’entreprises. go-zero est un framework de microservices développé sur la base du langage Golang. Il présente les caractéristiques de hautes performances, de facilité d'utilisation, d'extension facile et de maintenance facile. Il est conçu pour aider les entreprises à créer rapidement des systèmes d'applications de microservices efficaces. sa croissance rapide

See all articles