Table des matières
一. 流的常用创建方法
1-1 使用Collection下的 stream() 和 parallelStream() 方法
1-2 使用Arrays 中的 stream() 方法,将数组转成流
1-3 使用Stream中的静态方法:of()、iterate()、generate()
1-4 使用 BufferedReader.lines() 方法,将每行内容转成流
1-5 使用 Pattern.splitAsStream() 方法,将字符串分隔成流
二、流的中间操作
2-1 筛选、去重与切片:filter、distinct、skip、limit
2-2 映射:map、flatMap
2-3 归约:统计-计算-逻辑处理:reduce
2-4 排序:sorted
三. 流的终止操作 allMatch,noneMatch,anyMatch,findFirst,findAny,count,max,min
3-1 普通收集 – 收集为List
3-2 普通收集 – 收集流为数组(Array)
3-3 普通收集 – 收集为Set
3-4 高级收集 – 收集为Map
3-5 高级收集 – 分组收集
四. Steam拓展
4-1 集合与对象互转
4-2 集合转对象
4-3 Java Steam中的并发操作实例
Maison Java javaDidacticiel Comment utiliser le streaming Steam en Java

Comment utiliser le streaming Steam en Java

May 14, 2023 pm 02:37 PM
java steam

一. 流的常用创建方法

1-1 使用Collection下的 stream() 和 parallelStream() 方法
List<String> list = new ArrayList<>();
Stream<String> stream = list.stream(); //获取一个顺序流
Stream<String> parallelStream = list.parallelStream(); //获取一个并行流
Copier après la connexion
1-2 使用Arrays 中的 stream() 方法,将数组转成流
Integer[] nums = new Integer[10];
Stream<Integer> stream = Arrays.stream(nums);
Copier après la connexion
1-3 使用Stream中的静态方法:of()、iterate()、generate()
// 1. of()
Stream<Integer> stream = Stream.of(1,2,3,4,5,6);
// 2. iterate()
Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 2).limit(6);
stream2.forEach(System.out::println); // 0 2 4 6 8 10
// 3. generate()
Stream<Double> stream3 = Stream.generate(Math::random).limit(2);
stream3.forEach(System.out::println);
Copier après la connexion
1-4 使用 BufferedReader.lines() 方法,将每行内容转成流
BufferedReader reader = new BufferedReader(new FileReader("F:\\test_stream.txt"));
Stream<String> lineStream = reader.lines();
lineStream.forEach(System.out::println);
Copier après la connexion
1-5 使用 Pattern.splitAsStream() 方法,将字符串分隔成流
Pattern pattern = Pattern.compile(",");
Stream<String> stringStream = pattern.splitAsStream("a,b,c,d");
stringStream.forEach(System.out::println);
Copier après la connexion

二、流的中间操作

// 1. 筛选与切片
filter:过滤流中的某些元素
limit skip distinct sorted 都是有状态操作,这些操作只有拿到前面处理后的所有元素之后才能继续下去。
limit(n):获取前n个元素
skip(n):跳过前n元素,配合limit(n)可实现分页
distinct:通过流中元素的 hashCode() 和 equals() 去除重复元素
// 2. 映射
map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
// 3. 消费 peek , 类似map,    
//        map接收的是一个Function表达式,有返回值;
//        而peek接收的是Consumer表达式,没有返回值。
// 4. 排序
sorted():自然排序,流中元素需实现Comparable接口
sorted(Comparator com):定制排序,自定义Comparator排序器
// 5.
Copier après la connexion
2-1 筛选、去重与切片:filter、distinct、skip、limit
// 实例:集合内元素>5,去重,跳过前两位,取剩下元素的两个返回为新集合
Stream<Integer> stream = Stream.of(6, 4, 6, 7, 3, 9, 8, 10, 12, 14, 14);
Stream<Integer> newStream = stream.filter(s -> s > 5) //6 6 7 9 8 10 12 14 14
 .distinct() //6 7 9 8 10 12 14
 .skip(2) //9 8 10 12 14
 .limit(2); //9 8
newStream.forEach(System.out::println);
Copier après la connexion
2-2 映射:map、flatMap
// 1. Map可以看成一个转换器,传入一个对象,返回新的对象
// map的使用实例   stream.map(x->x.getId());
List<String> list = Arrays.asList("a,b,c", "1,2,3");
// 去掉字符串中所有的,
List<String> collect = list.stream().map(s -> s.replaceAll(",", "")).collect(Collectors.toList());
// collect集合内容为:{abc,123}
System.out.println(collect);

// 2. flatMap   效果:结果展平 ,即把嵌套集合,按照子集合的形式,统一放入到新的一个集合中    
//                接收一个函数作为参数,将流中的每个值都换成另一个流,
//                然后把所有流连接成一个流。
Stream<String> stringStream = list.stream().flatMap(s -> {
    // 将字符串以,分割后得到一个字符串数组
    String[] split = s.split(",");
    // 然后将每个字符串数组对应流返回,flatMap会自动把返回的所有流连接成一个流
    Stream<String> stream = Arrays.stream(split);
    return stream;
});
// stringStream.collect(Collectors.toList())的集合内容为:{a,b,c,1,2,3}
System.out.println(stringStream.collect(Collectors.toList()));
Copier après la connexion
2-3 归约:统计-计算-逻辑处理:reduce
//    说明:reduce看似效果和map相似,
//            但reduce返回的是函数经过执行运算后的结果,
//            而map返回的是处理后新的集合
List<String> memberNames = new ArrayList<>();
memberNames.add("Amitabh");
memberNames.add("Shekhar");
memberNames.add("Aman");
memberNames.add("Rahul");
memberNames.add("Shahrukh");
memberNames.add("Salman");
memberNames.add("Yana");
memberNames.add("Lokesh");

// 将集合中的元素按照#连接成字符串,并返回放置在Optional<String>中
Optional<String> reduced = memberNames.stream()
        .reduce((s1,s2) -> s1 + "#" + s2);
// 有值则取出打印显示        
reduced.ifPresent(System.out::println);  
// 输出内容:   Amitabh#Shekhar#Aman#Rahul#Shahrukh#Salman#Yana#Lokesh

// 计算统计实例:
    /**
     * T reduce(T identity, BinaryOperator<T> accumulator);
     * identity:它允许用户提供一个循环计算的初始值。
     * accumulator:计算的累加器,
     */
    private static void testReduce() {
        //T reduce(T identity, BinaryOperator<T> accumulator);
        System.out.println("给定个初始值,求和");
        System.out.println(Stream.of(1, 2, 3, 4).reduce(100, (sum, item) -> sum + item));
        System.out.println(Stream.of(1, 2, 3, 4).reduce(100, Integer::sum));
        // 输出:110

        System.out.println("给定个初始值,求min");
        System.out.println(Stream.of(1, 2, 3, 4).reduce(100, (min, item) -> Math.min(min, item)));
        System.out.println(Stream.of(1, 2, 3, 4).reduce(100, Integer::min));
        // 输出:1

        System.out.println("给定个初始值,求max");
        System.out.println(Stream.of(1, 2, 3, 4).reduce(100, (max, item) -> Math.max(max, item)));
        System.out.println(Stream.of(1, 2, 3, 4).reduce(100, Integer::max));
        // 输出:100
 
        //Optional<T> reduce(BinaryOperator<T> accumulator);
        // 注意返回值,上面的返回是T,泛型,传进去啥类型,返回就是啥类型。
        // 下面的返回的则是Optional类型
        System.out.println("无初始值,求和");
        System.out.println(Stream.of(1, 2, 3, 4).reduce(Integer::sum).orElse(0)); 
        // 输出:10
        Integer sum=Stream.of(1, 2, 3, 4).reduce((x,y)->x+y).get();
        System.out.println(sum);  // 输出:10
        
        System.out.println("无初始值,求max");
        System.out.println(Stream.of(1, 2, 3, 4).reduce(Integer::max).orElse(0));
        // 输出:4 
        
        System.out.println("无初始值,求min");
        System.out.println(Stream.of(1, 2, 3, 4).reduce(Integer::min).orElse(0));
        // 输出:1
 
    }
Copier après la connexion
2-4 排序:sorted
// 按照默认字典顺序排序
stream.sorted(); 
// 按照sortNo排序
stream.sorted((x,y)->Integer.compare(x.getSortNo(),y.getSortNo()));
 
2-4-1 函数式接口排序
// 正向排序(默认)
pendingPeriod.stream().sorted(Comparator.comparingInt(ReservoirPeriodResult::getId));
// 逆向排序
pendingPeriod.stream().sorted(Comparator.comparingInt(ReservoirPeriodResult::getId).reversed());
 
2-4-2 LocalDate 和 LocalDateTime 排序
// 准备测试数据
Stream<DateModel> stream = Stream.of(new DateModel(LocalDate.of(2020, 1, 1))
, new DateModel(LocalDate.of(2021, 1, 1)), new DateModel(LocalDate.of(2022, 1, 1)));

// 正向排序(默认)
stream.sorted(Comparator.comparing(DateModel::getLocalDate))
.forEach(System.out::println);
// 逆向排序
stream.sorted(Comparator.comparing(DateModel::getLocalDate).reversed())
.forEach(System.out::println);
Copier après la connexion

三. 流的终止操作 allMatch,noneMatch,anyMatch,findFirst,findAny,count,max,min

// 匹配和聚合
allmatch,noneMatch,anyMatch用于对集合中对象的某一个属性值是否存在判断。
    allMatch全部符合该条件返回true,
    noneMatch全部不符合该断言返回true
    anyMatch 任意一个元素符合该断言返回true
// 实例:
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
boolean allMatch = list.stream().allMatch(e -> e > 10); //false
boolean noneMatch = list.stream().noneMatch(e -> e > 10); //true
boolean anyMatch = list.stream().anyMatch(e -> e > 4); //true

// 其他一些方法
findFirst:返回流中第一个元素
        String firstMatchedName = memberNames.stream()
                .filter((s) -> s.startsWith("L"))
                .findFirst().get();
findAny:返回流中的任意元素
count:返回流中元素的总个数
    long totalMatched = memberNames.stream()
        .filter((s) -> s.startsWith("A"))
        .count();
max:返回流中元素最大值
min:返回流中元素最小值
Copier après la connexion
3-1 普通收集 – 收集为List
// 默认返回的类型为ArrayList,可通过Collectors.toCollection(LinkedList::new)
//        显示指明使用其它数据结构作为返回值容器。
List<String> collect = stream.collect(Collectors.toList());

// 由集合创建流的收集需注意:仅仅修改流字段中的内容,没有返回新类型,
//        如下操作直接修改原始集合,无需处理返回值。
userVos.stream().map(e -> e.setDeptName(hashMap.get(e.getDeptId())))
.collect(Collectors.toList());

// 收集偶数集合的实例:
List<Integer> list = new ArrayList<Integer>();
for(int i = 1; i< 10; i++){
    list.add(i);
}
Stream<Integer> stream = list.stream();
List<Integer> evenNumbersList = stream.filter(i -> i%2 == 0)
                                       .collect(Collectors.toList());
System.out.print(evenNumbersList);
Copier après la connexion
3-2 普通收集 – 收集流为数组(Array)
// list 为 {1,2,3,.....100}
Stream<Integer> stream = list.stream();
Integer[] evenNumbersArr = stream.filter(i -> i%2 == 0).toArray(Integer[]::new);
Copier après la connexion
3-3 普通收集 – 收集为Set
// 默认返回类型为HashSet,可通过Collectors.toCollection(TreeSet::new)
//        显示指明使用其它数据结构作为返回值容器。
Set<String> collect = stream.collect(Collectors.toSet());
Copier après la connexion
3-4 高级收集 – 收集为Map
//    默认返回类型为HashMap,可通过Collectors.toCollection(LinkedHashMap::new)
//        显示指明使用其它数据结构作为返回值容器

// 测试实体类
@Data
public class Entity {
    private Integer id;
    private String name;
}

// 模拟从数据库中查询批量的数据
List<Entity> entityList = Stream.of(new Entity(1,"A"), 
new Entity(2,"B"), new Entity(3,"C")).collect(Collectors.toList());

// 将集合数据转化成id与name的Map
Map<Integer, String> hashMap = entityList.stream()
.collect(Collectors.toMap(Entity::getId, Entity::getName));
Copier après la connexion
3-5 高级收集 – 分组收集
// 默认使用List作为分组后承载容器
Map<Integer, List<XUser>> hashMap = 
xUsers.stream().collect(Collectors.groupingBy(XUser::getDeptId));
 
// 显示指明使用List作为分组后承载容器
Map<Integer, List<XUser>> hashMap = 
xUsers.stream().collect(Collectors.groupingBy(XUser::getDeptId, Collectors.toList()));

// 映射后再分组
Map<Integer, List<String>> hashMap = xUsers.stream().collect(Collectors.groupingBy(XUser::getDeptId,Collectors.mapping(XUser::getUserName,Collectors.toList())));
Copier après la connexion

四. Steam拓展

4-1 集合与对象互转
/**
 * 将单个对象转化为集合
 *
 * @param t   对象实例
 * @param <T> 对象类型
 * @param <C> 集合类型
 * @return 包含对象的集合实例
 */
public static <T, C extends Collection<T>> Collection<T> toCollection(T t) {
    return toCollection(t, ArrayList::new);
}

/**
 * 用户自定义返回的集合实例类型:  将单个对象转化为集合
 *
 * @param t        对象实例
 * @param supplier 集合工厂
 * @param <T>      对象类型
 * @param <C>      集合类型
 * @return 包含对象的集合实例
 */
public static <T, C extends Collection<T>> Collection<T> toCollection(T t, Supplier<C> supplier) {
    return Stream.of(t).collect(Collectors.toCollection(supplier));
}
Copier après la connexion
4-2 集合转对象
/**
 * 取出集合中第一个元素
 *
 * @param collection 集合实例
 * @param <E>        集合中元素类型
 * @return 泛型类型
 */
public static <E> E toObject(Collection<E> collection) {
    // 处理集合空指针异常
    Collection<E> coll = Optional.ofNullable(collection).orElseGet(ArrayList::new);
    // 此处可以对流进行排序,然后取出第一个元素
    return coll.stream().findFirst().orElse(null);
}
Copier après la connexion
4-3 Java Steam中的并发操作实例
List<Integer> list = new ArrayList<Integer>();
for(int i = 1; i< 10; i++){
    list.add(i);
}
Stream<Integer> stream = list.parallelStream();    // 创建并发流

Integer[] evenNumbersArr = stream.filter(i -> i%2 == 0).toArray(Integer[]::new);
System.out.print(evenNumbersArr);   // 打印出的偶数为无规则排序的
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Racine carrée en Java Racine carrée en Java Aug 30, 2024 pm 04:26 PM

Guide de la racine carrée en Java. Nous discutons ici du fonctionnement de Square Root en Java avec un exemple et son implémentation de code respectivement.

Nombre parfait en Java Nombre parfait en Java Aug 30, 2024 pm 04:28 PM

Guide du nombre parfait en Java. Nous discutons ici de la définition, comment vérifier le nombre parfait en Java ?, des exemples d'implémentation de code.

Générateur de nombres aléatoires en Java Générateur de nombres aléatoires en Java Aug 30, 2024 pm 04:27 PM

Guide du générateur de nombres aléatoires en Java. Nous discutons ici des fonctions en Java avec des exemples et de deux générateurs différents avec d'autres exemples.

Weka en Java Weka en Java Aug 30, 2024 pm 04:28 PM

Guide de Weka en Java. Nous discutons ici de l'introduction, de la façon d'utiliser Weka Java, du type de plate-forme et des avantages avec des exemples.

Numéro de Smith en Java Numéro de Smith en Java Aug 30, 2024 pm 04:28 PM

Guide du nombre de Smith en Java. Nous discutons ici de la définition, comment vérifier le numéro Smith en Java ? exemple avec implémentation de code.

Questions d'entretien chez Java Spring Questions d'entretien chez Java Spring Aug 30, 2024 pm 04:29 PM

Dans cet article, nous avons conservé les questions d'entretien Java Spring les plus posées avec leurs réponses détaillées. Pour que vous puissiez réussir l'interview.

Break or Return of Java 8 Stream Forach? Break or Return of Java 8 Stream Forach? Feb 07, 2025 pm 12:09 PM

Java 8 présente l'API Stream, fournissant un moyen puissant et expressif de traiter les collections de données. Cependant, une question courante lors de l'utilisation du flux est: comment se casser ou revenir d'une opération FOREAK? Les boucles traditionnelles permettent une interruption ou un retour précoce, mais la méthode Foreach de Stream ne prend pas directement en charge cette méthode. Cet article expliquera les raisons et explorera des méthodes alternatives pour la mise en œuvre de terminaison prématurée dans les systèmes de traitement de flux. Lire plus approfondie: Améliorations de l'API Java Stream Comprendre le flux Forach La méthode foreach est une opération terminale qui effectue une opération sur chaque élément du flux. Son intention de conception est

Java Made Simple : un guide du débutant sur la puissance de programmation Java Made Simple : un guide du débutant sur la puissance de programmation Oct 11, 2024 pm 06:30 PM

Java Made Simple : Guide du débutant sur la puissance de programmation Introduction Java est un langage de programmation puissant utilisé dans tout, des applications mobiles aux systèmes d'entreprise. Pour les débutants, la syntaxe de Java est simple et facile à comprendre, ce qui en fait un choix idéal pour apprendre la programmation. Syntaxe de base Java utilise un paradigme de programmation orienté objet basé sur les classes. Les classes sont des modèles qui organisent ensemble les données et les comportements associés. Voici un exemple simple de classe Java : publicclassPerson{privateStringname;privateintage;

See all articles