Table des matières
Pourquoi GIL est nécessaire
Implémentation de GIL
Quelques remarques
Optimisation GIL
La cohérence des données utilisateur ne peut pas compter sur GIL
Maison développement back-end Tutoriel Python Qu'est-ce que le GIL en Python

Qu'est-ce que le GIL en Python

May 14, 2023 pm 02:40 PM
python gil

Pourquoi GIL est nécessaire

GIL est essentiellement un verrou. Les étudiants qui ont étudié les systèmes d'exploitation savent que les verrous sont introduits pour éviter les incohérences de données causées par un accès simultané. Il existe de nombreuses variables globales définies en dehors des fonctions dans CPython, telles que usable_arenas et usedpools dans la gestion de la mémoire. Si plusieurs threads demandent de la mémoire en même temps, ces variables peuvent être modifiées en même temps, provoquant une confusion des données. De plus, le mécanisme de récupération de place de Python est basé sur le comptage de références. Tous les objets ont un champ ob_refcnt qui indique le nombre de variables faisant actuellement référence à l'objet actuel. Les opérations telles que l'affectation de variables et le passage de paramètres augmenteront le nombre de références. la fonction réduira le nombre de références. De même, si plusieurs threads modifient le nombre de références d'un même objet en même temps, il est possible que ob_refcnt soit différent de la valeur réelle, ce qui peut provoquer des fuites de mémoire. Les objets qui ne seront pas utilisés ne seront pas recyclés, et plus encore. sérieusement, ils peuvent être recyclés. L'objet référencé a provoqué le crash de l'interpréteur Python.

Implémentation de GIL

La définition de GIL dans CPython est la suivante

struct _gil_runtime_state {
    unsigned long interval; // 请求 GIL 的线程在 interval 毫秒后还没成功,就会向持有 GIL 的线程发出释放信号
    _Py_atomic_address last_holder; // GIL 上一次的持有线程,强制切换线程时会用到
    _Py_atomic_int locked; // GIL 是否被某个线程持有
    unsigned long switch_number; // GIL 的持有线程切换了多少次
    // 条件变量和互斥锁,一般都是成对出现
    PyCOND_T cond;
    PyMUTEX_T mutex;
    // 条件变量,用于强制切换线程
    PyCOND_T switch_cond;
    PyMUTEX_T switch_mutex;
};
Copier après la connexion

La chose la plus essentielle est le champ verrouillé protégé par mutex, qui indique si GIL est actuellement détenu. D'autres champs sont utilisés pour optimiser GIL. Lorsqu'un thread demande GIL, il appelle la méthode take_gil(), et lorsqu'il libère GIL, il appelle la méthode drop_gil(). Afin d'éviter la famine, lorsqu'un thread attend un intervalle de quelques millisecondes (la valeur par défaut est de 5 millisecondes) et n'a pas demandé de GIL, il enverra activement un signal au thread détenant GIL, et le détenteur de GIL vérifiera le signal au moment approprié. , s'il s'avère que d'autres threads s'appliquent, le GIL sera libéré de force. Le timing approprié mentionné ici est différent selon les versions. Au début, il était vérifié toutes les 100 instructions. Dans Python 3.10.4, il était vérifié à la fin de l'instruction conditionnelle, à la fin de chaque corps de boucle de l'instruction de boucle. , et la fin de l'appel de fonction. Elle sera vérifiée le moment venu.

La fonction take_gil() qui s'applique à GIL est simplifiée comme suit

static void take_gil(PyThreadState *tstate)
{
    ...
    // 申请互斥锁
    MUTEX_LOCK(gil->mutex);
    // 如果 GIL 空闲就直接获取
    if (!_Py_atomic_load_relaxed(&gil->locked)) {
        goto _ready;
    }
    // 尝试等待
    while (_Py_atomic_load_relaxed(&gil->locked)) {
        unsigned long saved_switchnum = gil->switch_number;
        unsigned long interval = (gil->interval >= 1 ? gil->interval : 1);
        int timed_out = 0;
        COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
        if (timed_out &&  _Py_atomic_load_relaxed(&gil->locked) && gil->switch_number == saved_switchnum) {
            SET_GIL_DROP_REQUEST(interp);
        }
    }
_ready:
    MUTEX_LOCK(gil->switch_mutex);
    _Py_atomic_store_relaxed(&gil->locked, 1);
    _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);

    if (tstate != (PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) {
        _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
        ++gil->switch_number;
    }
    // 唤醒强制切换的线程主动等待的条件变量
    COND_SIGNAL(gil->switch_cond);
    MUTEX_UNLOCK(gil->switch_mutex);
    if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request)) {
        RESET_GIL_DROP_REQUEST(interp);
    }
    else {
        COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
    }
    ...
    // 释放互斥锁
    MUTEX_UNLOCK(gil->mutex);
}
Copier après la connexion

Afin de garantir l'atomicité, l'ensemble du corps de la fonction doit demander et libérer le verrouillage mutex gil->mutex au début et à la fin respectivement. Si le GIL actuel est inactif, récupérez le GIL directement. S'il n'est pas inactif, attendez la variable de condition gil->cond interval millisecondes (pas moins de 1 milliseconde) s'il expire et qu'aucune commutation de GIL ne se produit pendant la période. , définissez gil_drop_request pour demander une commutation forcée. Le GIL conserve le thread, sinon il continue d'attendre. Une fois le GIL obtenu avec succès, les valeurs de gil->locked, gil->last_holder et gil->switch_number doivent être mises à jour, la variable de condition gil->switch_cond doit être réveillée et le verrouillage mutex gil->mutex doit être libéré.

La fonction drop_gil() qui libère GIL est simplifiée comme suit

static void drop_gil(struct _ceval_runtime_state *ceval, struct _ceval_state *ceval2,
         PyThreadState *tstate)
{
    ...
    if (tstate != NULL) {
        _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
    }
    MUTEX_LOCK(gil->mutex);
    _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
    // 释放 GIL
    _Py_atomic_store_relaxed(&gil->locked, 0);
    // 唤醒正在等待 GIL 的线程
    COND_SIGNAL(gil->cond);
    MUTEX_UNLOCK(gil->mutex);
    if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request) && tstate != NULL) {
        MUTEX_LOCK(gil->switch_mutex);
        // 强制等待一次线程切换才被唤醒,避免饥饿
        if (((PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) == tstate)
        {
            assert(is_tstate_valid(tstate));
            RESET_GIL_DROP_REQUEST(tstate->interp);
            COND_WAIT(gil->switch_cond, gil->switch_mutex);
        }
        MUTEX_UNLOCK(gil->switch_mutex);
    }
}
Copier après la connexion

Libère d'abord le GIL sous la protection de gil->mutex, puis réveille les autres threads qui attendent le GIL. Dans un environnement multi-CPU, le thread actuel a une probabilité plus élevée de réacquérir le GIL après avoir libéré le GIL. Afin d'éviter de priver les autres threads de faim, le thread actuel doit être forcé d'attendre la variable de condition gil->switch_cond. Il ne peut obtenir le GIL que lorsque d'autres threads. Ce n'est qu'alors que le thread actuel sera réveillé.

Quelques remarques

Optimisation GIL

Le code contraint par GIL ne peut pas être exécuté en parallèle, ce qui réduit les performances globales, afin de minimiser la perte de performances, Python effectuera activement des opérations d'E/S ou des calculs CPU intensifs qui n'impliquent pas d'accès aux objets. Libérer le GIL réduit la granularité du GIL, comme

  • lecture et écriture de fichiers

  • accès au réseau

  • données cryptées/données compressées

Donc à proprement parler, dans le cas d'un seul processus , plus Deux threads Python peuvent être exécutés en même temps. Par exemple, un thread s'exécute normalement et un autre thread compresse les données.

La cohérence des données utilisateur ne peut pas compter sur GIL

GIL est un verrou généré pour maintenir la cohérence des variables internes de l'interpréteur Python. La cohérence des données utilisateur n'est pas responsable de GIL. Bien que GIL garantisse également dans une certaine mesure la cohérence des données utilisateur, par exemple, les instructions qui n'impliquent pas de sauts et d'appels de fonction dans Python 3.10.4 seront exécutées de manière atomique sous les contraintes de GIL, mais la cohérence des données dans la logique métier. l'utilisateur doit le verrouiller lui-même pour s'en assurer.

Le code suivant utilise deux threads pour simuler la collection de fragments de l'utilisateur afin de gagner des récompenses

from threading import Thread

def main():
    stat = {"piece_count": 0, "reward_count": 0}
    t1 = Thread(target=process_piece, args=(stat,))
    t2 = Thread(target=process_piece, args=(stat,))
    t1.start()
    t2.start()
    t1.join()
    t2.join()
    print(stat)

def process_piece(stat):
    for i in range(10000000):
        if stat["piece_count"] % 10 == 0:
            reward = True
        else:
            reward = False
        if reward:
            stat["reward_count"] += 1
        stat["piece_count"] += 1

if __name__ == "__main__":
    main()
Copier après la connexion

Supposons que l'utilisateur puisse obtenir une récompense à chaque fois qu'il collecte 10 fragments. Chaque fil a collecté 1 000 000 fragments et devrait obtenir 9999999 récompenses (la dernière fois. aucune récompense n'a été calculée), un total de 20 000 000 de fragments devraient être collectés et 1 999 998 récompenses devraient être collectées. Cependant, les résultats de la première exécution sur mon ordinateur sont les suivants

{'piece_count': 20000000, 'reward_count': 1999987}
Copier après la connexion

Le nombre total de fragments est comme prévu, mais le le nombre de récompenses est de 12 de moins. Le nombre de pièces est correct car dans Python 3.10.4, stat["piece_count"] += 1 est effectué de manière atomique sous les contraintes GIL. Puisque le thread d'exécution peut être changé à la fin de chaque boucle, il est possible que le thread t1 augmente piece_count à 100 à la fin d'une certaine boucle, mais avant que la boucle suivante ne commence à juger modulo 10, l'interpréteur Python passe au thread t2 pour l'exécution, et t2 augmentera piece_count Si vous atteignez 101, vous manquerez une récompense.

Pièce jointe : Comment éviter d'être affecté par GIL

Cela dit, si je ne mentionne pas la solution, ce n’est qu’un article de vulgarisation scientifique, mais c’est inutile. GIL est si mauvais, y a-t-il un moyen de contourner ce problème ? Jetons un coup d'œil aux solutions disponibles.

Remplacer Thread par multiprocessus

L'émergence de la bibliothèque multiprocessus vise en grande partie à compenser l'inefficacité de la bibliothèque de threads due à GIL. Il réplique complètement un ensemble d'interfaces fournies par thread pour faciliter la migration. La seule différence est qu'il utilise plusieurs processus au lieu de plusieurs threads. Chaque processus possède son propre GIL indépendant, il n'y aura donc aucun conflit de GIL entre les processus.

Bien sûr, le multiprocessus n'est pas une panacée. Son introduction augmentera la difficulté de la communication des données et de la synchronisation entre les threads temporels du programme. Prenons le compteur comme exemple. Si nous voulons que plusieurs threads accumulent la même variable, pour le thread, déclarez une variable globale et enveloppez trois lignes avec le contexte thread.Lock. En multiprocessus, puisque les processus ne peuvent pas voir les données des autres, ils peuvent uniquement déclarer une file d'attente dans le thread principal, la placer puis l'obtenir, ou utiliser la mémoire partagée. Ce coût supplémentaire de mise en œuvre rend le codage de programmes multithread, déjà très pénible, encore plus pénible. Quelles sont les difficultés spécifiques ? Les lecteurs intéressés peuvent lire davantage cet article

Utiliser d'autres analyseurs

Comme mentionné précédemment, puisque GIL n'est qu'un produit de CPython, les autres analyseurs sont-ils meilleurs ? Oui, les analyseurs comme JPython et IronPython ne nécessitent pas l'aide du GIL en raison de la nature de leurs langages d'implémentation. Cependant, en utilisant Java/C# pour l'implémentation de l'analyseur, ils ont également perdu l'opportunité de profiter des nombreuses fonctionnalités utiles des modules de langage C de la communauté. Ces analyseurs ont donc toujours été relativement spécialisés. Après tout, tout le monde choisira le premier plutôt que la fonction et les performances au début. Mieux vaut faire que parfait.

Alors c’est désespéré ?

Bien sûr, la communauté Python travaille également très dur pour améliorer continuellement le GIL, et essaie même de supprimer le GIL. Et il y a eu de nombreuses améliorations dans chaque version mineure. " encore une fois Planification

– Ajout de la fonction de priorité des threads (les threads de haute priorité peuvent forcer d'autres threads à libérer les verrous GIL qu'ils détiennent)

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

MySQL doit-il payer MySQL doit-il payer Apr 08, 2025 pm 05:36 PM

MySQL a une version communautaire gratuite et une version d'entreprise payante. La version communautaire peut être utilisée et modifiée gratuitement, mais le support est limité et convient aux applications avec des exigences de stabilité faibles et des capacités techniques solides. L'Enterprise Edition fournit une prise en charge commerciale complète pour les applications qui nécessitent une base de données stable, fiable et haute performance et disposées à payer pour le soutien. Les facteurs pris en compte lors du choix d'une version comprennent la criticité des applications, la budgétisation et les compétences techniques. Il n'y a pas d'option parfaite, seulement l'option la plus appropriée, et vous devez choisir soigneusement en fonction de la situation spécifique.

Comment utiliser MySQL après l'installation Comment utiliser MySQL après l'installation Apr 08, 2025 am 11:48 AM

L'article présente le fonctionnement de la base de données MySQL. Tout d'abord, vous devez installer un client MySQL, tel que MySQLWorkBench ou le client de ligne de commande. 1. Utilisez la commande MySQL-UROot-P pour vous connecter au serveur et connecter avec le mot de passe du compte racine; 2. Utilisez Createdatabase pour créer une base de données et utilisez Sélectionner une base de données; 3. Utilisez CreateTable pour créer une table, définissez des champs et des types de données; 4. Utilisez InsertInto pour insérer des données, remettre en question les données, mettre à jour les données par mise à jour et supprimer les données par Supprimer. Ce n'est qu'en maîtrisant ces étapes, en apprenant à faire face à des problèmes courants et à l'optimisation des performances de la base de données que vous pouvez utiliser efficacement MySQL.

MySQL ne peut pas être installé après le téléchargement MySQL ne peut pas être installé après le téléchargement Apr 08, 2025 am 11:24 AM

Les principales raisons de la défaillance de l'installation de MySQL sont les suivantes: 1. Problèmes d'autorisation, vous devez s'exécuter en tant qu'administrateur ou utiliser la commande sudo; 2. Des dépendances sont manquantes et vous devez installer des packages de développement pertinents; 3. Conflits du port, vous devez fermer le programme qui occupe le port 3306 ou modifier le fichier de configuration; 4. Le package d'installation est corrompu, vous devez télécharger et vérifier l'intégrité; 5. La variable d'environnement est mal configurée et les variables d'environnement doivent être correctement configurées en fonction du système d'exploitation. Résolvez ces problèmes et vérifiez soigneusement chaque étape pour installer avec succès MySQL.

Le fichier de téléchargement MySQL est endommagé et ne peut pas être installé. Réparer la solution Le fichier de téléchargement MySQL est endommagé et ne peut pas être installé. Réparer la solution Apr 08, 2025 am 11:21 AM

Le fichier de téléchargement mysql est corrompu, que dois-je faire? Hélas, si vous téléchargez MySQL, vous pouvez rencontrer la corruption des fichiers. Ce n'est vraiment pas facile ces jours-ci! Cet article expliquera comment résoudre ce problème afin que tout le monde puisse éviter les détours. Après l'avoir lu, vous pouvez non seulement réparer le package d'installation MySQL endommagé, mais aussi avoir une compréhension plus approfondie du processus de téléchargement et d'installation pour éviter de rester coincé à l'avenir. Parlons d'abord de la raison pour laquelle le téléchargement des fichiers est endommagé. Il y a de nombreuses raisons à cela. Les problèmes de réseau sont le coupable. L'interruption du processus de téléchargement et l'instabilité du réseau peut conduire à la corruption des fichiers. Il y a aussi le problème avec la source de téléchargement elle-même. Le fichier serveur lui-même est cassé, et bien sûr, il est également cassé si vous le téléchargez. De plus, la numérisation excessive "passionnée" de certains logiciels antivirus peut également entraîner une corruption des fichiers. Problème de diagnostic: déterminer si le fichier est vraiment corrompu

MySQL a-t-il besoin d'Internet MySQL a-t-il besoin d'Internet Apr 08, 2025 pm 02:18 PM

MySQL peut s'exécuter sans connexions réseau pour le stockage et la gestion des données de base. Cependant, la connexion réseau est requise pour l'interaction avec d'autres systèmes, l'accès à distance ou l'utilisation de fonctionnalités avancées telles que la réplication et le clustering. De plus, les mesures de sécurité (telles que les pare-feu), l'optimisation des performances (choisissez la bonne connexion réseau) et la sauvegarde des données sont essentielles pour se connecter à Internet.

Comment optimiser les performances MySQL pour les applications de haute charge? Comment optimiser les performances MySQL pour les applications de haute charge? Apr 08, 2025 pm 06:03 PM

Guide d'optimisation des performances de la base de données MySQL dans les applications à forte intensité de ressources, la base de données MySQL joue un rôle crucial et est responsable de la gestion des transactions massives. Cependant, à mesure que l'échelle de l'application se développe, les goulots d'étranglement des performances de la base de données deviennent souvent une contrainte. Cet article explorera une série de stratégies efficaces d'optimisation des performances MySQL pour garantir que votre application reste efficace et réactive dans des charges élevées. Nous combinerons des cas réels pour expliquer les technologies clés approfondies telles que l'indexation, l'optimisation des requêtes, la conception de la base de données et la mise en cache. 1. La conception de l'architecture de la base de données et l'architecture optimisée de la base de données sont la pierre angulaire de l'optimisation des performances MySQL. Voici quelques principes de base: sélectionner le bon type de données et sélectionner le plus petit type de données qui répond aux besoins peut non seulement économiser un espace de stockage, mais également améliorer la vitesse de traitement des données.

Solutions au service qui ne peuvent pas être démarrées après l'installation de MySQL Solutions au service qui ne peuvent pas être démarrées après l'installation de MySQL Apr 08, 2025 am 11:18 AM

MySQL a refusé de commencer? Ne paniquez pas, vérifions-le! De nombreux amis ont découvert que le service ne pouvait pas être démarré après avoir installé MySQL, et ils étaient si anxieux! Ne vous inquiétez pas, cet article vous emmènera pour le faire face calmement et découvrez le cerveau derrière! Après l'avoir lu, vous pouvez non seulement résoudre ce problème, mais aussi améliorer votre compréhension des services MySQL et vos idées de problèmes de dépannage, et devenir un administrateur de base de données plus puissant! Le service MySQL n'a pas réussi et il y a de nombreuses raisons, allant des erreurs de configuration simples aux problèmes système complexes. Commençons par les aspects les plus courants. Connaissances de base: une brève description du processus de démarrage du service MySQL Service Startup. Autrement dit, le système d'exploitation charge les fichiers liés à MySQL, puis démarre le démon mysql. Cela implique la configuration

Comment optimiser les performances de la base de données après l'installation de MySQL Comment optimiser les performances de la base de données après l'installation de MySQL Apr 08, 2025 am 11:36 AM

L'optimisation des performances MySQL doit commencer à partir de trois aspects: configuration d'installation, indexation et optimisation des requêtes, surveillance et réglage. 1. Après l'installation, vous devez ajuster le fichier my.cnf en fonction de la configuration du serveur, tel que le paramètre innodb_buffer_pool_size, et fermer query_cache_size; 2. Créez un index approprié pour éviter les index excessifs et optimiser les instructions de requête, telles que l'utilisation de la commande Explication pour analyser le plan d'exécution; 3. Utilisez le propre outil de surveillance de MySQL (ShowProcessList, Showstatus) pour surveiller la santé de la base de données, et sauvegarde régulièrement et organisez la base de données. Ce n'est qu'en optimisant en continu ces étapes que les performances de la base de données MySQL peuvent être améliorées.

See all articles