Table des matières
1.url encode加密
2.unicode 加密
3.Base64 加密
4.MD5
5.PBKDF2
6.SHA
7.HMAC
9.3DES
10.AES
11.RC4
12.Rabbit
13.RSA
Maison développement back-end Tutoriel Python Quels sont les algorithmes de chiffrement et de déchiffrement courants en Python ?

Quels sont les algorithmes de chiffrement et de déchiffrement courants en Python ?

May 16, 2023 pm 05:25 PM
python

1.url encode加密

简介:当url地址含有中文,或者参数有中文的时候,这个算是很正常了,但是把这样的url作为参数传递的时候(最常见的callback),需要把一些中文甚至'/'做一下编码转换。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import urllib.parse
 
 
text = "我爱吃鸡腿"
s = urllib.parse.quote(text)
print(s) # %E6%88%91%E7%88%B1%E5%90%83%E9%B8%A1%E8%85%BF
u = urllib.parse.unquote(s)
print(u) #我爱吃鸡腿
Copier après la connexion

2.unicode 加密

其实这应该不算一种加密 更多的应该算是一种编码与解码,但是由于运用很广泛 我也加进去了

# -*- coding: utf-8 -*-
# @Time    : 2023/2/28 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
str1 = "你好"
 
# 编码
enStr1 = str1.encode('unicode-escape').decode()
print(enStr1) # \u4f60\u597d
 
# 解码
deStr1 = enStr1.encode().decode('unicode-escape')
print(deStr1) # 你好
Copier après la connexion

3.Base64 加密

简介:Base64 是一种用 64 个字符来表示任意二进制数据的方法。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import base64
 
 
def base64_encode(text):
    encode_data = base64.b64encode(text.encode())
    return encode_data
 
 
def base64_decode(encode_data):
    decode_data = base64.b64decode(encode_data)
    return decode_data
 
 
if __name__ == '__main__':
    text = 'I love Python!'
    encode_data = base64_encode(text)
    decode_data = base64_decode(encode_data)
    print('Base64 编码:', encode_data)
    print('Base64 解码:', decode_data)
    
    # Base64 编码: b'SSBsb3ZlIFB5dGhvbiE='
# Base64 解码: b'I love Python!'
Copier après la connexion

4.MD5

简介:全称 MD5 消息摘要算法(英文名称:MD5 Message-Digest Algorithm),又称哈希算法、散列算法,由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于 1992 年作为 RFC 1321 被公布,用以取代 MD4 算法。摘要算法属于单向加密,这意味着用摘要算法处理后的明文无法被解密。

摘要算法的第二个特点密文是固定长度的,它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。之所以叫摘要算法,它的算法就是提取明文重要的特征。使用摘要算法后,两个不同的明文可能会生成相同的密文,但这种情况非常罕见。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import hashlib
 
 
def md5_test1():
    md5 = hashlib.new('md5', 'I love python!'.encode('utf-8'))
    print(md5.hexdigest())
 
 
def md5_test2():
    md5 = hashlib.md5()
    md5.update('I love '.encode('utf-8'))
    md5.update('python!'.encode('utf-8'))
    print(md5.hexdigest())
 
 
if __name__ == '__main__':
    md5_test1()  # 21169ee3acd4a24e1fcb4322cfd9a2b8
    md5_test2()  # 21169ee3acd4a24e1fcb4322cfd9a2b8
Copier après la connexion

5.PBKDF2

简介:英文名称:Password-Based Key Derivation Function 2,PBKDF2 是 RSA 实验室的公钥加密标准(PKCS)系列的一部分,
2017 年发布的 RFC 8018 (PKCS #5 v2.1)推荐使用 PBKDF2 进行密码散列。

PBKDF2 将伪随机函数(例如 HMAC),把明文和一个盐值(salt)作为输入参数,然后进行重复运算,并最终产生密钥,如果重复的次数足够大,破解的成本就会变得很高。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import binascii
from Cryptodome.Hash import SHA1
from Cryptodome.Protocol.KDF import PBKDF2
 
 
text = 'I love Python!'
salt = b'43215678'
result = PBKDF2(text,  salt, count=10, hmac_hash_module=SHA1)
result = binascii.hexlify(result)
print(result)
# b'7fee6e8350cfe96314c76aaa6e853a50'
Copier après la connexion

6.SHA

简介:全称安全哈希算法(英文名称:Secure Hash Algorithm),主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(
Digital Signature Algorithm DSA),SHA 通常指 SHA 家族的五个算法,分别是 SHA-1、SHA-224、SHA-256、SHA-384、SHA-512,后四者有时并称为 SHA-2,SHA 是比 MD5 更安全一点的摘要算法,MD5 的密文是 32 位,而 SHA-1 是 40 位,版本越强,密文越长,代价是速度越慢。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import hashlib
 
 
def sha1_test1():
    sha1 = hashlib.new('sha1', 'I love python!'.encode('utf-8'))
    print(sha1.hexdigest())
 
 
def sha1_test2():
    sha1 = hashlib.sha1()
    sha1.update('I love python!'.encode('utf-8'))
    print(sha1.hexdigest())
 
 
if __name__ == '__main__':
    sha1_test1()  # 23c02b203bd2e2ca19da911f1d270a06d86719fb
    sha1_test2()  # 23c02b203bd2e2ca19da911f1d270a06d86719fb
Copier après la connexion

7.HMAC

简介:全称散列消息认证码、密钥相关的哈希运算消息认证码(英文名称:Hash-based Message Authentication Code 或者 Keyed-hash Message Authentication Code),于 1996 年提出,1997 年作为 RFC 2104 被公布,HMAC 加密算法是一种安全的基于加密 Hash函数和共享密钥的消息认证协议,它要求通信双方共享密钥 key、约定算法、对报文进行 Hash 运算,形成固定长度的认证码。通信双方通过认证码的校验来确定报文的合法性。

import hmac
# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
def hmac_test1():
    message = b'I love python!'
    key = b'secret'
    md5 = hmac.new(key, message, digestmod='MD5')
    print(md5.hexdigest())
    
    
def hmac_test2():
    key = 'secret'.encode('utf8')
    sha1 = hmac.new(key, digestmod='sha1')
    sha1.update('I love '.encode('utf8'))
    sha1.update('Python!'.encode('utf8'))
    print(sha1.hexdigest())
        
        
if __name__ == '__main__':
    hmac_test1()  # 9c503a1f852edcc3526ea56976c38edf
    hmac_test2()  # 2d8449a4292d4bbeed99ce9ea570880d6e19b61a
Copier après la connexion

8.DES

简介:全称数据加密标准(英文名称:Data Encryption Standard),加密与解密使用同一密钥,属于对称加密算法,1977 年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),DES 是一个分组加密算法,使用 56 位的密钥(一般认为密钥是 64 位,但是密钥的每个第 8 位设置为奇偶校验位,所以实际上有效位只有 56 位),由于 56 位密钥长度相对较短,所以 DES 是不安全的,现在基本上已被更高级的加密标准 AES 取代。

mode 支持:CBC,CFB,CTR,CTRGladman,ECB,OFB 等。

padding 支持:ZeroPadding,NoPadding,AnsiX923,Iso10126,Iso97971,Pkcs7 等。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import binascii
# 加密模式 CBC,填充方式 PAD_PKCS5
from pyDes import des, CBC, PAD_PKCS5
 
 
def des_encrypt(key, text, iv):
    k = des(key, CBC, iv, pad=None, padmode=PAD_PKCS5)
    en = k.encrypt(text, padmode=PAD_PKCS5)
    return binascii.b2a_hex(en)
 
 
def des_decrypt(key, text, iv):
    k = des(key, CBC, iv, pad=None, padmode=PAD_PKCS5)
    de = k.decrypt(binascii.a2b_hex(text), padmode=PAD_PKCS5)
    return de
 
 
if __name__ == '__main__':
    secret_key = '12345678'   # 密钥
    text = 'I love Python!'   # 加密对象
    iv = secret_key           # 偏移量
    secret_str = des_encrypt(secret_key, text, iv)
    print('加密字符串:', secret_str)
    clear_str = des_decrypt(secret_key, secret_str, iv)
    print('解密字符串:', clear_str)
    
    
    # 加密字符串: b'302d3abf2421169239f829b38a9545f1'
    # 解密字符串: b'I love Python!'
Copier après la connexion

9.3DES

简介:全称三重数据加密算法(英文名称:Triple Data Encryption Standard、Triple Data Encryption Algorithm、TDES、TDEA),是对称加密算法中的一种。70 年代初由 IBM 研发,后 1977 年被采纳为数据加密标准,它相当于是对每个数据块应用三次 DES 加密算法。由于计算机运算能力的增强,原版 DES 密码的密钥长度变得容易被暴力破解;3DES 即是设计用来提供一种相对简单的方法,即通过增加 DES 的密钥长度来避免破解,所以严格来说 3DES 不是设计一种全新的块密码算法。

mode 支持:CBC,CFB,CTR,CTRGladman,ECB,OFB 等。

padding 支持:ZeroPadding,NoPadding,AnsiX923,Iso10126,Iso97971,Pkcs7 等。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
from Cryptodome.Cipher import DES3
from Cryptodome import Random
 
 
# 需要补位,str不是16的倍数那就补足为16的倍数
def add_to_16(value):
    while len(value) % 16 != 0:
        value += '\0'
    return str.encode(value)
 
 
def des_encrypt(key, text, iv):
    # 加密模式 OFB
    cipher_encrypt = DES3.new(add_to_16(key), DES3.MODE_OFB, iv)
    encrypted_text = cipher_encrypt.encrypt(text.encode("utf-8"))
    return encrypted_text
 
 
def des_decrypt(key, text, iv):
    # 加密模式 OFB
    cipher_decrypt = DES3.new(add_to_16(key), DES3.MODE_OFB, iv)
    decrypted_text = cipher_decrypt.decrypt(text)
    return decrypted_text
 
 
if __name__ == '__main__':
    key = '12345678'            # 密钥,16 位
    text = 'I love Python!'     # 加密对象
    iv = Random.new().read(DES3.block_size)  # DES3.block_size == 8
    secret_str = des_encrypt(key, text, iv)
    print('加密字符串:', secret_str)
    clear_str = des_decrypt(key, secret_str, iv)
    print('解密字符串:', clear_str)
 
 
# 加密字符串: b'\xa5\x8a\xd4R\x99\x16j\xba?vg\xf2\xb6\xa9'
# 解密字符串: b'I love Python!'
Copier après la connexion

10.AES

简介:全称高级加密标准(英文名称:Advanced Encryption Standard),在密码学中又称 Rijndael 加密法,由美国国家标准与技术研究院 (NIST)于 2001 年发布,并在 2002 年成为有效的标准。这个标准用来替代原先的 DES,已经被多方分析且广为全世界所使用,它本身只有一个密钥,即用来实现加密,也用于解密。

mode 支持:CBC,CFB,CTR,CTRGladman,ECB,OFB 等。

padding 支持:ZeroPadding,NoPadding,AnsiX923,Iso10126,Iso97971,Pkcs7 等。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import base64
from Cryptodome.Cipher import AES
 
 
# 需要补位,str不是16的倍数那就补足为16的倍数
def add_to_16(value):
    while len(value) % 16 != 0:
        value += '\0'
    return str.encode(value)
 
 
# 加密方法
def aes_encrypt(key, t, iv):
    aes = AES.new(add_to_16(key), AES.MODE_CBC, add_to_16(iv))  # 初始化加密器
    encrypt_aes = aes.encrypt(add_to_16(t)) # 先进行 aes 加密
    # 执行加密并转码返回 bytes
    encrypted_text = str(base64.encodebytes(encrypt_aes), encoding='utf-8')  
    return encrypted_text
 
 
# 解密方法
def aes_decrypt(key, t, iv):
    # 初始化加密器
    aes = AES.new(add_to_16(key), AES.MODE_CBC, add_to_16(iv))     
    # 优先逆向解密 base64 成 bytes   
    base64_decrypted = base64.decodebytes(t.encode(encoding='utf-8')) 
    # 执行解密密并转码返回str 
    decrypted_text = str(aes.decrypt(base64_decrypted), encoding='utf-8').replace('\0', '')  
    return decrypted_text
 
 
if __name__ == '__main__':
    secret_key = '12345678'   # 密钥
    text = 'I love Python!'   # 加密对象
    iv = secret_key           # 初始向量
    encrypted_str = aes_encrypt(secret_key, text, iv)
    print('加密字符串:', encrypted_str)
    decrypted_str = aes_decrypt(secret_key, encrypted_str, iv)
    print('解密字符串:', decrypted_str)
 
 
# 加密字符串: lAVKvkQh+GtdNpoKf4/mHA==
# 解密字符串: I love Python!
Copier après la connexion

11.RC4

简介:英文名称:Rivest Cipher 4,也称为 ARC4 或 ARCFOUR,是一种流加密算法,密钥长度可变。它加解密使用相同的密钥,因此也属于对称加密算法。
RC4 是有线等效加密(WEP)中采用的加密算法,也曾经是 TLS 可采用的算法之一,该算法的速度可以达到 DES 加密的 10 倍左右,且具有很高级别的非线性,
虽然它在软件方面的简单性和速度非常出色,但在 RC4 中发现了多个漏洞,它特别容易受到攻击,RC4 作为一种老旧的验证和加密算法易于受到黑客攻击,现在逐渐不推荐使用了。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import base64
from Cryptodome.Cipher import ARC4
 
 
def rc4_encrypt(key, t):
    enc = ARC4.new(key.encode('utf8'))
    res = enc.encrypt(t.encode('utf-8'))
    res = base64.b64encode(res)
    return res
 
 
def rc4_decrypt(key, t):
    data = base64.b64decode(t)
    enc = ARC4.new(key.encode('utf8'))
    res = enc.decrypt(data)
    return res
 
 
if __name__ == "__main__":
    secret_key = '12345678'   # 密钥
    text = 'I love Python!'   # 加密对象
    encrypted_str = rc4_encrypt(secret_key, text)
    print('加密字符串:', encrypted_str)
    decrypted_str = rc4_decrypt(secret_key, encrypted_str)
    print('解密字符串:', decrypted_str)
 
 
# 加密字符串: b'8tNVu3/U/veJR2KgyBw='
# 解密字符串: b'I love Python!'
Copier après la connexion

12.Rabbit

简介:Rabbit 加密算法是一个高性能的流密码加密方式,2003 年首次被提出,它从 128 位密钥和 64 位初始向量(iv)创建一个密钥流。

目前没有找到有第三方库可以直接实现 Rabbit 算法,

13.RSA

简介:英文名称:Rivest-Shamir-Adleman,是 1977 年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的,RSA 就是他们三人姓氏开头字母拼在一起组成的,RSA 加密算法是一种非对称加密算法。

在公开密钥加密和电子商业中RSA被广泛使用。它被普遍认为是目前比较优秀的公钥方案之一。

RSA是第一个能同时用于加密和数字签名的算法,它能够抵抗到目前为止已知的所有密码攻击。

# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import rsa
 
 
def rsa_encrypt(pu_key, t):
    # 公钥加密
    rsa = rsa.encrypt(t.encode("utf-8"), pu_key)
    return rsa
 
 
def rsa_decrypt(pr_key, t):
    # 私钥解密
    rsa = rsa.decrypt(t, pr_key).decode("utf-8")
    return rsa
 
 
if __name__ == "__main__":
    public_key, private_key = rsa.newkeys(512)   # 生成公钥、私钥
    print('公钥:', public_key)
    print('私钥:', private_key)
    text = 'I love Python!'  # 加密对象
    encrypted_str = rsa_encrypt(public_key, text)
    print('加密字符串:', encrypted_str)
    decrypted_str = rsa_decrypt(private_key, encrypted_str)
    print('解密字符串:', decrypted_str)
 
'''
公钥: PublicKey(7636479066127060956100056267701318377455704072072698049978592945665550579944731953431504993757594103617537700972424661030900303472123028864161050235168613, 65537)
私钥: PrivateKey(7636479066127060956100056267701318377455704072072698049978592945665550579944731953431504993757594103617537700972424661030900303472123028864161050235168613, 65537, 3850457767980968449796700480128630632818465005441846698224554128042451115530564586537997896922067523638756079019054611200173122138274839877369624069360253, 4713180694194659323798858305046043997526301456820208338158979730140812744181638767, 1620238976946735819854194349514460863335347861649166352709029254680140139)
加密字符串: b"\x1aaeps\xa0c}\xb6\xcf\xa3\xb0\xbb\xedA\x7f}\x03\xdc\xd5\x1c\x9b\xdb\xda\xf9q\x80[=\xf5\x91\r\xd0'f\xce\x1f\x01\xef\xa5\xdb3\x96\t0qIxF\xbd\x11\xd6\xb25\xc5\xe1pM\xb4M\xc2\xd4\x03\xa6"
解密字符串: I love Python!
'''
模块 Cryptodome:
# -*- coding: utf-8 -*-
# @Time    : 2022/9/29 10:43
# @Author  : lzc
# @Email   : hybpjx@163.com
# @File    : utilsMiddlewares.py
# @cnblogs : https://www.cnblogs.com/zichliang/
# @Software: PyCharm
 
import base64
from Cryptodome.PublicKey import RSA
from Cryptodome.Cipher import PKCS1_v1_5
 
 
data = "cKK8B2rWwfwWeXhz"
public_key = "MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAM1xhOWaThSMpfxFsjV5YaWOFHt+6RvS+zH2Pa47VVr8PkZYnRaaKKy2MYBuEh7mZfM/R1dUXTgu0gp6VTNeNQkCAwEAAQ=="
rsa_key = RSA.import_key(base64.b64decode(public_key))  # 导入读取到的公钥
cipher = PKCS1_v1_5.new(rsa_key)                        # 生成对象
cipher_text = base64.b64encode(cipher.encrypt(data.encode(encoding="utf-8")))
print(cipher_text)
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le plan Python de 2 heures: une approche réaliste Le plan Python de 2 heures: une approche réaliste Apr 11, 2025 am 12:04 AM

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python: Explorer ses applications principales Python: Explorer ses applications principales Apr 10, 2025 am 09:41 AM

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Méthode de Navicat pour afficher le mot de passe de la base de données MongoDB Méthode de Navicat pour afficher le mot de passe de la base de données MongoDB Apr 08, 2025 pm 09:39 PM

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).

Comment utiliser Aws Glue Crawler avec Amazon Athena Comment utiliser Aws Glue Crawler avec Amazon Athena Apr 09, 2025 pm 03:09 PM

En tant que professionnel des données, vous devez traiter de grandes quantités de données provenant de diverses sources. Cela peut poser des défis à la gestion et à l'analyse des données. Heureusement, deux services AWS peuvent aider: AWS Glue et Amazon Athena.

Comment lire la file d'attente redis Comment lire la file d'attente redis Apr 10, 2025 pm 10:12 PM

Pour lire une file d'attente à partir de Redis, vous devez obtenir le nom de la file d'attente, lire les éléments à l'aide de la commande LPOP et traiter la file d'attente vide. Les étapes spécifiques sont les suivantes: Obtenez le nom de la file d'attente: Nommez-le avec le préfixe de "Fitre:" tel que "Fitre: My-Quyue". Utilisez la commande LPOP: éjectez l'élément de la tête de la file d'attente et renvoyez sa valeur, telle que la file d'attente LPOP: My-Queue. Traitement des files d'attente vides: si la file d'attente est vide, LPOP renvoie NIL et vous pouvez vérifier si la file d'attente existe avant de lire l'élément.

Comment afficher la version serveur de redis Comment afficher la version serveur de redis Apr 10, 2025 pm 01:27 PM

Question: Comment afficher la version Redis Server? Utilisez l'outil de ligne de commande redis-Cli --version pour afficher la version du serveur connecté. Utilisez la commande Info Server pour afficher la version interne du serveur et devez analyser et retourner des informations. Dans un environnement de cluster, vérifiez la cohérence de la version de chaque nœud et peut être vérifiée automatiquement à l'aide de scripts. Utilisez des scripts pour automatiser les versions de visualisation, telles que la connexion avec les scripts Python et les informations d'impression.

Comment démarrer le serveur avec redis Comment démarrer le serveur avec redis Apr 10, 2025 pm 08:12 PM

Les étapes pour démarrer un serveur Redis incluent: Installez Redis en fonction du système d'exploitation. Démarrez le service Redis via Redis-Server (Linux / MacOS) ou Redis-Server.exe (Windows). Utilisez la commande redis-Cli Ping (Linux / MacOS) ou redis-Cli.exe Ping (Windows) pour vérifier l'état du service. Utilisez un client redis, tel que redis-cli, python ou node.js pour accéder au serveur.

Dans quelle mesure le mot de passe de Navicat est-il sécurisé? Dans quelle mesure le mot de passe de Navicat est-il sécurisé? Apr 08, 2025 pm 09:24 PM

La sécurité du mot de passe de Navicat repose sur la combinaison de cryptage symétrique, de force de mot de passe et de mesures de sécurité. Des mesures spécifiques incluent: l'utilisation de connexions SSL (à condition que le serveur de base de données prenne en charge et configure correctement le certificat), à la mise à jour régulièrement de NAVICAT, en utilisant des méthodes plus sécurisées (telles que les tunnels SSH), en restreignant les droits d'accès et, surtout, à ne jamais enregistrer de mots de passe.

See all articles