Maison Périphériques technologiques IA Infrastructure d'IA : l'importance de la collaboration entre les équipes informatiques et scientifiques des données

Infrastructure d'IA : l'importance de la collaboration entre les équipes informatiques et scientifiques des données

May 18, 2023 pm 11:08 PM
人工智能 架构 it

L'IA a transformé de nombreux secteurs, permettant aux entreprises d'améliorer leur efficacité, de prendre des décisions et d'améliorer l'expérience client. Alors que l’IA continue d’évoluer et de devenir plus complexe, il est essentiel que les entreprises investissent dans l’infrastructure nécessaire à son développement et à son déploiement. Un aspect clé de cette infrastructure est la collaboration entre les équipes informatiques et de science des données, car toutes deux jouent un rôle clé pour garantir le succès des initiatives d'IA.

Infrastructure dIA : limportance de la collaboration entre les équipes informatiques et scientifiques des données

Avec le développement rapide de l'intelligence artificielle, la demande en puissance de calcul, en capacités de stockage et de réseau augmente également. Cette demande exerce une pression sur l’infrastructure informatique traditionnelle, qui n’a pas été conçue pour gérer les charges de travail complexes et gourmandes en ressources requises par l’IA.

En conséquence, les entreprises cherchent désormais à créer une infrastructure d'IA capable de prendre en charge les besoins uniques des charges de travail d'IA, tels que le calcul haute performance, le stockage de données à grande échelle et les réseaux à faible latence.

L'un des défis majeurs dans la construction d'une infrastructure d'IA est la nécessité d'équilibrer les besoins des équipes informatiques et de science des données. Les équipes informatiques sont chargées de gérer les composants matériels, logiciels et réseau qui prennent en charge l'infrastructure d'IA, tandis que les équipes de science des données sont chargées de développer et de déployer des modèles d'IA capables d'exploiter cette infrastructure pour fournir des informations et des résultats précieux.

Les équipes informatiques et de science des données doivent travailler en étroite collaboration pour assurer la construction et la maintenance efficaces de l'infrastructure d'IA. Cette collaboration permet de sécuriser l'infrastructure conçue pour répondre aux besoins spécifiques des charges de travail d'IA tout en offrant la flexibilité et l'évolutivité nécessaires pour soutenir la croissance rapide de l'IA.

La sélection des composants matériels et logiciels pour l'infrastructure d'IA est un domaine particulièrement critique pour la collaboration entre les équipes informatiques et de science des données. Par exemple, les équipes informatiques doivent comprendre les exigences de performances des charges de travail d'IA, telles que le besoin de processeurs à haute vitesse, de grandes quantités de mémoire et d'accélérateurs spécialisés tels que les GPU.

D'autre part, les équipes de science des données doivent être conscientes des limites et des capacités du matériel et des logiciels disponibles afin de pouvoir développer des modèles d'IA pouvant être déployés et exécutés efficacement sur l'infrastructure.

Un autre aspect clé de l’infrastructure de l’IA est la gestion des données. La formation et la validation des modèles d'IA nécessitent souvent de grandes quantités de données, ce qui peut poser des problèmes de stockage, de traitement et d'accès. Les équipes informatiques et scientifiques des données doivent collaborer sur des stratégies de gestion de ces données, telles que la mise en œuvre d'un lac de données ou d'un entrepôt de données, et garantir que les données sont stockées et traitées de manière sécurisée et efficace.

La sécurité est également un enjeu clé lorsqu'il s'agit d'infrastructures d'IA, car la sensibilité des données utilisées dans les modèles d'IA peut en faire des cibles de cyberattaques. Les équipes informatiques et scientifiques des données doivent travailler ensemble pour garantir que l'infrastructure est conçue dans un souci de sécurité, en mettant en œuvre des mesures telles que le chiffrement, le contrôle d'accès et la surveillance pour se protéger contre les menaces.

Pour que les projets d'intelligence artificielle réussissent, ils doivent avoir la capacité d'étendre et d'ajuster l'infrastructure en fonction de la demande. Cela nécessite une collaboration continue entre les équipes informatiques et scientifiques des données, car elles doivent constamment évaluer les performances de leur infrastructure et procéder à des ajustements pour répondre aux besoins changeants des charges de travail d'IA.

On ne saurait trop insister sur le fait que la collaboration entre les équipes informatiques et de science des données est essentielle à la création et à la maintenance de l’infrastructure d’IA. En travaillant ensemble, ces équipes peuvent garantir que l'infrastructure est conçue pour répondre aux besoins uniques des charges de travail d'IA tout en offrant la flexibilité et l'évolutivité nécessaires pour soutenir la croissance rapide de l'IA. Alors que l’IA continue de transformer les secteurs et de stimuler l’innovation, les entreprises qui investissent dans une collaboration étroite entre les équipes informatiques et scientifiques des données seront bien placées pour tirer parti des opportunités qu’offre l’IA.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Jun 28, 2024 am 03:51 AM

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Assistant de codage d'IA augmenté par le contexte utilisant Rag et Sem-Rag Jun 10, 2024 am 11:08 AM

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Sept questions d'entretien technique Cool GenAI et LLM Sept questions d'entretien technique Cool GenAI et LLM Jun 07, 2024 am 10:06 AM

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Le réglage fin peut-il vraiment permettre au LLM d'apprendre de nouvelles choses : l'introduction de nouvelles connaissances peut amener le modèle à produire davantage d'hallucinations Jun 11, 2024 pm 03:57 PM

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Jul 25, 2024 am 06:42 AM

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Les performances de SOTA, la méthode d'IA de prédiction d'affinité protéine-ligand multimodale de Xiamen, combinent pour la première fois des informations sur la surface moléculaire Jul 17, 2024 pm 06:37 PM

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Quelle est la courbe d'apprentissage de l'architecture du framework Golang ? Quelle est la courbe d'apprentissage de l'architecture du framework Golang ? Jun 05, 2024 pm 06:59 PM

La courbe d'apprentissage de l'architecture du framework Go dépend de la familiarité avec le langage Go et le développement back-end ainsi que de la complexité du framework choisi : une bonne compréhension des bases du langage Go. Il est utile d’avoir une expérience en développement back-end. Les cadres qui diffèrent en complexité entraînent des différences dans les courbes d'apprentissage.

Cinq écoles d'apprentissage automatique que vous ne connaissez pas Cinq écoles d'apprentissage automatique que vous ne connaissez pas Jun 05, 2024 pm 08:51 PM

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

See all articles