Table des matières
4. Résultats expérimentaux
Maison Périphériques technologiques IA Prévisions de séries chronologiques multivariées : prévision indépendante ou prévision conjointe ?

Prévisions de séries chronologiques multivariées : prévision indépendante ou prévision conjointe ?

May 20, 2023 pm 09:04 PM
独立预测 联合预测 多元时序

Aujourd'hui, je vous présente un article publié par NTU en avril de cette année. Il traite principalement des différences dans les effets de la prédiction indépendante (indépendante du canal) et de la prédiction conjointe (dépendante du canal) dans les problèmes de prédiction de séries chronologiques multivariées, ainsi que des raisons qui les sous-tendent. , et leur méthode d'optimisation.

多元时序预测:独立预测 or 联合预测?

Titre de l'article : Le compromis entre capacité et robustesse : revisiter la stratégie indépendante des canaux pour la prévision de séries chronologiques multivariées# 🎜🎜#

Adresse de téléchargement : https://arxiv.org/pdf/2304.05206v1.pdf

1 Prévisions indépendantes et prévisions conjointes

Séries chronologiques multiples. Dans les problèmes de prévision, il existe deux types du point de vue des méthodes de modélisation multivariées. L'un est la prévision indépendante du canal (indépendant du canal, CI), qui fait référence au traitement des séquences multivariées comme plusieurs prévisions univariées, et l'autre est modélisée séparément. est une prédiction conjointe (dépendante du canal, CD), qui fait référence à la modélisation de plusieurs variables ensemble et à la prise en compte de la relation entre chaque variable. La différence entre les deux est indiquée ci-dessous.

多元时序预测:独立预测 or 联合预测?

Les deux méthodes ont leurs propres caractéristiques : la méthode CI ne considère qu'une seule variable, le modèle est plus simple, mais le plafond est également inférieur, car la relation entre chaque séquence n'est pas prise en compte et certaines informations clés sont perdues tandis que la méthode CD prend en compte des informations plus complètes, mais le modèle est également plus complexe ;

2. Quelle méthode est la meilleure

Réalisez d'abord une expérience comparative détaillée et utilisez des modèles linéaires pour observer les performances de la méthode CI et de la méthode CD sur plusieurs effet des ensembles de données pour déterminer quelle méthode est la meilleure. Dans les expériences présentées dans cet article, la principale conclusion est que la méthode CI montre de meilleures performances sur la plupart des tâches et une plus grande stabilité des effets. Comme le montre l'image ci-dessous, les indicateurs MAE, MSE et autres de CI sont fondamentalement plus petits que CD dans chaque ensemble de données, et la fluctuation de l'effet est également plus petite.

多元时序预测:独立预测 or 联合预测?

Comme le montrent les résultats expérimentaux ci-dessous, CI se compare à CD dans la plupart des longueurs de fenêtre de prédiction et sur le ensemble de données, les effets sont améliorés.

多元时序预测:独立预测 or 联合预测?

Pourquoi la méthode CI est-elle meilleure et plus stable que le CD dans les applications pratiques ? L'article a effectué quelques preuves théoriques et la conclusion principale est que la dérive de distribution existe souvent dans les données réelles, et que l'utilisation de méthodes CI peut aider à atténuer ce problème et à améliorer la généralisation du modèle. L'image ci-dessous montre la distribution de l'ACF (coefficient d'autocorrélation, reflétant la relation entre les séquences futures et les séquences historiques) de chaque ensemble de données et ensemble de tests au fil du temps. On peut voir que la dérive de distribution est répandue dans divers ensembles de données (c'est-à-dire). l'ACF de la rame est différent de l'ACF de l'ensemble de test, c'est-à-dire que la relation entre l'historique et la séquence future des deux est différente).

多元时序预测:独立预测 or 联合预测?

L'article prouve par la théorie que CI est efficace pour atténuer la dérive de distribution. Le choix entre CI et CD est A. compromis entre la capacité du modèle et la robustesse du modèle. Bien que le modèle CD soit plus complexe, il est également plus sensible aux changements de distribution. Ceci est en fait similaire à la relation entre la capacité du modèle et la généralisation du modèle. Plus le modèle est complexe, plus les échantillons de l'ensemble d'apprentissage auxquels le modèle s'adapte sont précis, mais la généralisation est mauvaise une fois la différence de distribution entre l'ensemble d'apprentissage et l'ensemble de test. est important, l'effet sera pire.

3. Comment optimiser

Concernant le problème de modélisation du CD, l'article propose quelques méthodes d'optimisation qui peuvent aider le modèle de CD à être plus robuste.

Régularisation : introduisez une perte de régularisation, utilisez la séquence moins le point d'échantillonnage le plus proche comme modèle d'entrée de séquence historique pour la prédiction et utilisez des contraintes de lissage pour prédire que les résultats s'écartent des observations voisines les plus proches. Pas trop. grand, ce qui rend les résultats estimés plus plats ; Deux matrices d'ordre inférieur équivalent à réduire la capacité du modèle, à atténuer les problèmes de surajustement et à améliorer la robustesse du modèle

Fonction de perte : MAE est utilisé à la place de MSE pour ; réduire la sensibilité du modèle aux valeurs aberrantes ;

Longueur de la séquence historique d'entrée : pour le modèle CD, plus la séquence historique d'entrée est longue, l'effet peut être réduit. Cela est également dû au fait que plus la séquence historique est longue, plus. le modèle est sensible à l'influence du changement de distribution. Pour le modèle CI, l'augmentation de la longueur de la séquence historique peut améliorer de manière plus stable l'effet de prédiction. 多元时序预测:独立预测 or 联合预测?

4. Résultats expérimentaux

La méthode mentionnée ci-dessus pour améliorer le modèle CD a été testée sur plusieurs ensembles de données. Par rapport au CD, une amélioration de l'effet relativement stable a été obtenue, indiquant que la méthode ci-dessus est relativement efficace pour améliorer la robustesse du multivarié. prédiction de séquence. Les résultats expérimentaux montrent que des facteurs tels que la décomposition de bas rang, la longueur historique de la fenêtre et le type de fonction de perte sont également répertoriés dans l'article en termes d'influence sur l'effet.

多元时序预测:独立预测 or 联合预测?

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

J'ai essayé le codage d'ambiance avec Cursor Ai et c'est incroyable! J'ai essayé le codage d'ambiance avec Cursor Ai et c'est incroyable! Mar 20, 2025 pm 03:34 PM

Le codage des ambiances est de remodeler le monde du développement de logiciels en nous permettant de créer des applications en utilisant le langage naturel au lieu de lignes de code sans fin. Inspirée par des visionnaires comme Andrej Karpathy, cette approche innovante permet de dev

Top 5 Genai Lunets de février 2025: GPT-4.5, Grok-3 et plus! Top 5 Genai Lunets de février 2025: GPT-4.5, Grok-3 et plus! Mar 22, 2025 am 10:58 AM

Février 2025 a été un autre mois qui change la donne pour une IA générative, nous apportant certaines des mises à niveau des modèles les plus attendues et de nouvelles fonctionnalités révolutionnaires. De Xai's Grok 3 et Anthropic's Claude 3.7 Sonnet, à Openai's G

Comment utiliser YOLO V12 pour la détection d'objets? Comment utiliser YOLO V12 pour la détection d'objets? Mar 22, 2025 am 11:07 AM

Yolo (vous ne regardez qu'une seule fois) a été un cadre de détection d'objets en temps réel de premier plan, chaque itération améliorant les versions précédentes. La dernière version Yolo V12 introduit des progrès qui améliorent considérablement la précision

Sora vs Veo 2: Laquelle crée des vidéos plus réalistes? Sora vs Veo 2: Laquelle crée des vidéos plus réalistes? Mar 10, 2025 pm 12:22 PM

Veo 2 de Google et Sora d'Openai: Quel générateur de vidéos AI règne en suprême? Les deux plates-formes génèrent des vidéos d'IA impressionnantes, mais leurs forces se trouvent dans différents domaines. Cette comparaison, en utilisant diverses invites, révèle quel outil répond le mieux à vos besoins. T

Google & # 039; s Gencast: Prévision météorologique avec Mini démo Gencast Google & # 039; s Gencast: Prévision météorologique avec Mini démo Gencast Mar 16, 2025 pm 01:46 PM

Gencast de Google Deepmind: une IA révolutionnaire pour les prévisions météorologiques Les prévisions météorologiques ont subi une transformation spectaculaire, passant des observations rudimentaires aux prédictions sophistiquées alimentées par l'IA. Gencast de Google Deepmind, un terreau

Chatgpt 4 o est-il disponible? Chatgpt 4 o est-il disponible? Mar 28, 2025 pm 05:29 PM

Chatgpt 4 est actuellement disponible et largement utilisé, démontrant des améliorations significatives dans la compréhension du contexte et la génération de réponses cohérentes par rapport à ses prédécesseurs comme Chatgpt 3.5. Les développements futurs peuvent inclure un interg plus personnalisé

Quelle IA est la meilleure que Chatgpt? Quelle IA est la meilleure que Chatgpt? Mar 18, 2025 pm 06:05 PM

L'article traite des modèles d'IA dépassant Chatgpt, comme Lamda, Llama et Grok, mettant en évidence leurs avantages en matière de précision, de compréhension et d'impact de l'industrie. (159 caractères)

O1 vs GPT-4O: le nouveau modèle Openai est-il meilleur que GPT-4O? O1 vs GPT-4O: le nouveau modèle Openai est-il meilleur que GPT-4O? Mar 16, 2025 am 11:47 AM

O1'S O1: Une vague de cadeaux de 12 jours commence par leur modèle le plus puissant à ce jour L'arrivée de décembre apporte un ralentissement mondial, les flocons de neige dans certaines parties du monde, mais Openai ne fait que commencer. Sam Altman et son équipe lancent un cadeau de don de 12 jours

See all articles