


Comment résoudre le problème de l'utilisation du pipeline pour accélérer les requêtes dans Redis
Protocoles de requête/réponse et RTT
Redis est un service TCP en mode client-serveur
, également connu sous le nom d'implémentation Requête/Réponse
de le protocole. client-server
模式的TCP服务,也被称为Request/Response
协议的实现。
这意味着通常一个请求的完成是遵循下面两个步骤:
Client发送一个操作命令给Server,从TCP的套接字Socket中读取Server的响应值,通常来说这是一种阻塞的方式
Server执行操作命令,然后将响应值返回给Client
举个例子
Client: INCR X Server: 1 Client: INCR X Server: 2 Client: INCR X Server: 3 Client: INCR X Server: 4
Clients和Servers是通过网络进行连接。网络连接速度可能会快得很快(例如本地回环网络)或者慢得很慢(例如跨越多个主机的网络)。不管网络怎么样,一个数据包从Client到Server,然后相应值又从Server返回Client都需要一定的时间。
这个时间被称为RTT(Round Trip Time)。当一个Client需要执行多个连续请求(比如添加许多个元素到一个list中,或者清掉Redis中许多个键值对),那么RTT是怎样影响到性能的呢?这个也是很方便去计算的。比如如果RTT的时间为250ms(假设互联网连接速度非常慢),即使Server可以每秒处理100k个请求,那么最多也只能接受每秒4个请求。
如果是回环网络,RTT将会特别的短(比如作者的127.0.0.1,RTT的响应时间为44ms),但是对于执行连续多次写操作时,也是一笔不小的消耗。
其实我们有其他办法来降低这种场景的消耗,开心不?惊喜不?
Redis Pipelining
在一个Request/Response
方式的服务中有一个特性:即使Client没有收到之前的响应值,也可以继续发送新的请求。这种特性意味着我们可以不需要等待Server的响应,可以率先发送许多操作命令给Server,然后在一次性读取Server的所有响应值。
这种方式被称为Pipelining
技术,该技术近几十年来被广泛的使用。比如多POP3协议的实现就支持这个特性,大大的提升了从server端下载新的邮件的速度。
Redis在很早的时候就支持该项技术,所以不管你运行的是什么版本,你都可以使用pipelining
技术,比如这里有一个使用 netcat 工具的:
$ (printf "PING\r\nPING\r\nPING\r\n"; sleep 1) | nc localhost 6379 +PONG +PONG +PONG
现在我们不需要为每一次请求付出RTT的消耗了,而是一次性发送三个操作命令。为了便于直观的理解,还是拿之前的说明,使用pipelining
技术该的实现顺序如下:
Client: INCR X Client: INCR X Client: INCR X Client: INCR X Server: 1 Server: 2 Server: 3 Server: 4
划重点(敲黑板):当client使用pipelining
发送操作命令时,server端将强制使用内存来排列响应结果。所以在使用pipelining
发送大量的操作命令的时候,最好确定一个合理的命令条数,一批一批的发送给Server端,比如发送10k个操作命令,读取响应结果,再发送10k个操作命令,以此类推…虽然说耗时近乎相同,但是额外的内存消耗将是这10k操作命令的排列响应结果所需的最大值。(为防止内存耗尽,选择一个合理的值)
It’s not just a matter of RTT
Pipelining
不是减少因为 RTT 造成消耗的唯一方式,但是它确实帮助你极大的提升每秒的执行命令数量。事实的真相是:从访问相应的数据结构并且生成答复结果的角度来看,不使用pipelining
确实代价很低;但是从套接字socket I/O的角度来看,恰恰相反。因为这涉及到了read()
和write()
调用,需要从用户态切换到内核态。这种上下文切换会特别损耗时间的。
一旦使用了pipelining
技术,很多操作命令将会从同一个read()
调用中执行读操作,大量的答复结果将会被分发到同一个write()
调用中执行写操作。基于此,随着管道的长度增加,每秒执行的查询数量最开始几乎呈直线型增加,直到不使用pipelining
技术的基准的10倍,如下图:
Some real world code example
不翻译,基本上就是说使用了pipelining

- # 🎜🎜#Client Envoyez une commande d'opération au serveur et lisez la valeur de réponse du serveur à partir du socket TCP De manière générale, il s'agit d'une méthode de blocage #🎜🎜#
- #🎜🎜#Le serveur exécute la commande d'opération. , puis renvoyez la valeur de réponse au Client#🎜🎜#
FOR-ONE-SECOND: Redis.SET("foo","bar") END
Requête/Réponse
: même si le Client ne reçoit pas la valeur de réponse précédente, il peut Continuez à envoyer de nouvelles demandes. Cette fonctionnalité signifie que nous n'avons pas besoin d'attendre la réponse du serveur. Nous pouvons d'abord envoyer de nombreuses commandes d'opération au serveur, puis lire toutes les valeurs de réponse du serveur en même temps. #🎜🎜##🎜🎜#Cette méthode est appelée technologie Pipelining
, qui a été largement utilisée au cours des dernières décennies. Par exemple, la mise en œuvre de plusieurs protocoles POP3 prend en charge cette fonctionnalité, ce qui améliore considérablement la vitesse de téléchargement des nouveaux e-mails depuis le serveur. #🎜🎜##🎜🎜#Redis a pris en charge cette technologie très tôt, donc quelle que soit la version que vous utilisez, vous pouvez utiliser la technologie pipelining
Par exemple, voici un outil utilisant netcat :#. 🎜🎜#rrreee#🎜🎜#Maintenant, nous n'avons plus besoin de payer RTT pour chaque demande, mais envoyez trois commandes d'opération à la fois. Afin de faciliter la compréhension intuitive, reprenons l'explication précédente et utilisons la technologie pipelining
La séquence d'implémentation est la suivante : #🎜🎜#rrreee#🎜🎜# Highlight (frapper au tableau) : Quand. le client utilise le pipelinelining
Lors de l'envoi d'une commande d'opération, le serveur forcera l'utilisation de la mémoire pour organiser les résultats de la réponse. Par conséquent, lorsque vous utilisez le pipelining
pour envoyer un grand nombre de commandes d'opération, il est préférable de déterminer un nombre raisonnable de commandes et de les envoyer au serveur par lots, par exemple en envoyant 10 000 commandes d'opération et en lisant la réponse. résultats. , puis envoyez 10 000 commandes d'opération, et ainsi de suite... Bien que la consommation de temps soit presque la même, la consommation de mémoire supplémentaire sera la valeur maximale requise pour le résultat de réponse de l'arrangement de ces 10 000 commandes d'opération. (Pour éviter l'épuisement de la mémoire, choisissez une valeur raisonnable)#🎜🎜##🎜🎜#Ce n'est pas seulement une question de RTT#🎜🎜##🎜🎜# La seule façon de provoquer une consommation, mais cela vous aide à augmenter considérablement le nombre de commandes exécutées par seconde. La vérité est la suivante : du point de vue de l'accès à la structure de données correspondante et de la génération du résultat de la réponse, ne pas utiliser le pipelining
est en effet très bon marché, mais du point de vue des E/S des sockets, c'est exactement le cas ; au contraire. Comme cela implique des appels read()
et write()
, vous devez passer du mode utilisateur au mode noyau. Ce type de changement de contexte prendra particulièrement du temps. #🎜🎜##🎜🎜#Une fois la technologie pipelining
utilisée, de nombreuses commandes d'opération effectueront des opérations de lecture à partir du même appel read()
, et un grand nombre de réponses les résultats seront envoyés au même appel write()
pour effectuer l'opération d'écriture. Sur cette base, à mesure que la longueur du pipeline augmente, le nombre de requêtes exécutées par seconde augmente initialement de manière presque linéaire jusqu'à atteindre 10 fois la ligne de base sans utiliser la technologie de pipelining
, comme indiqué ci-dessous : #🎜🎜# # 🎜🎜#
pipelining
améliore les performances de 5 fois. #🎜🎜#Pipelining VS Scripting
Redis Scripting
(2.6+版本可用),通过使用在Server端完成大量工作的脚本Scripting
,可以更加高效的解决大量pipelining
用例。使用脚本Scripting
的最大好处就是在读和写的时候消耗更少的性能,使得像读、写、计算这样的操作更加快速。(当client需要写操作之前获取读操作的响应结果时,pepelining
就显得相形见拙。) 有时候,应用可能需要在使用pipelining
时,发送 EVAL
或者 EVALSHA
命令,这是可行的,并且Redis明确支持这么这种SCRIPT LOAD
命令。(它保证可可以调用 EVALSHA
而不会有失败的风险)。
Appendix: Why are busy loops slow even on the loopback interface?
读完全文,你可能还会感到疑问:为什么如下的Redis测试基准 benchmark
会执行这么慢,甚至在Client和Server在一个物理机上也是如此:
FOR-ONE-SECOND: Redis.SET("foo","bar") END
毕竟Redis进程和测试基准benchmark
在相同的机器上运行,并且这是没有任何实际的延迟和真实的网络参与,不就是消息通过内存从一个地方拷贝到另一个地方么? 原因是进程在操作系统中并不是一直运行。真实的情景是系统内核调度,调度到进程运行,它才会运行。比如测试基准benchmark
被允许运行,从Redis Server中读取响应内容(与最后一次执行的命令相关),并且写了一个新的命令。这时命令将在回环网络的套接字中,但是为了被Redis Server读取,系统内核需要调度Redis Server进程(当前正在系统中挂起),周而复始。所以由于系统内核调度的机制,就算是在回环网络中,仍然会涉及到网络延迟。 简言之,在网络服务器中衡量性能时,使用回环网络测试并不是一个明智的方式。应该避免使用此种方式来测试基准。
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le mode Redis Cluster déploie les instances Redis sur plusieurs serveurs grâce à la rupture, à l'amélioration de l'évolutivité et de la disponibilité. Les étapes de construction sont les suivantes: Créez des instances de redis étranges avec différents ports; Créer 3 instances Sentinel, Moniteur Redis Instances et basculement; Configurer les fichiers de configuration Sentinel, ajouter des informations d'instance Redis de surveillance et des paramètres de basculement; Configurer les fichiers de configuration d'instance Redis, activer le mode de cluster et spécifier le chemin du fichier d'informations de cluster; Créer un fichier nœuds.conf, contenant des informations de chaque instance redis; Démarrez le cluster, exécutez la commande CREATE pour créer un cluster et spécifiez le nombre de répliques; Connectez-vous au cluster pour exécuter la commande d'informations de cluster pour vérifier l'état du cluster; faire

Comment effacer les données Redis: utilisez la commande flushall pour effacer toutes les valeurs de clé. Utilisez la commande flushdb pour effacer la valeur clé de la base de données actuellement sélectionnée. Utilisez SELECT pour commuter les bases de données, puis utilisez FlushDB pour effacer plusieurs bases de données. Utilisez la commande del pour supprimer une clé spécifique. Utilisez l'outil Redis-CLI pour effacer les données.

Pour lire une file d'attente à partir de Redis, vous devez obtenir le nom de la file d'attente, lire les éléments à l'aide de la commande LPOP et traiter la file d'attente vide. Les étapes spécifiques sont les suivantes: Obtenez le nom de la file d'attente: Nommez-le avec le préfixe de "Fitre:" tel que "Fitre: My-Quyue". Utilisez la commande LPOP: éjectez l'élément de la tête de la file d'attente et renvoyez sa valeur, telle que la file d'attente LPOP: My-Queue. Traitement des files d'attente vides: si la file d'attente est vide, LPOP renvoie NIL et vous pouvez vérifier si la file d'attente existe avant de lire l'élément.

L'utilisation des opérations Redis pour verrouiller nécessite l'obtention du verrouillage via la commande setnx, puis en utilisant la commande Expire pour définir le temps d'expiration. Les étapes spécifiques sont les suivantes: (1) Utilisez la commande setnx pour essayer de définir une paire de valeurs de clé; (2) Utilisez la commande Expire pour définir le temps d'expiration du verrou; (3) Utilisez la commande del pour supprimer le verrouillage lorsque le verrouillage n'est plus nécessaire.

L'utilisation de la directive Redis nécessite les étapes suivantes: Ouvrez le client Redis. Entrez la commande (Verbe Key Value). Fournit les paramètres requis (varie de l'instruction à l'instruction). Appuyez sur Entrée pour exécuter la commande. Redis renvoie une réponse indiquant le résultat de l'opération (généralement OK ou -err).

La meilleure façon de comprendre le code source redis est d'aller étape par étape: familiarisez-vous avec les bases de Redis. Sélectionnez un module ou une fonction spécifique comme point de départ. Commencez par le point d'entrée du module ou de la fonction et affichez le code ligne par ligne. Affichez le code via la chaîne d'appel de fonction. Familiez les structures de données sous-jacentes utilisées par Redis. Identifiez l'algorithme utilisé par Redis.

Les causes de la perte de données redis incluent les défaillances de mémoire, les pannes de courant, les erreurs humaines et les défaillances matérielles. Les solutions sont: 1. Stockez les données sur le disque avec RDB ou AOF Persistance; 2. Copiez sur plusieurs serveurs pour une haute disponibilité; 3. Ha avec Redis Sentinel ou Redis Cluster; 4. Créez des instantanés pour sauvegarder les données; 5. Mettre en œuvre les meilleures pratiques telles que la persistance, la réplication, les instantanés, la surveillance et les mesures de sécurité.

Utilisez l'outil de ligne de commande redis (Redis-CLI) pour gérer et utiliser Redis via les étapes suivantes: Connectez-vous au serveur, spécifiez l'adresse et le port. Envoyez des commandes au serveur à l'aide du nom et des paramètres de commande. Utilisez la commande d'aide pour afficher les informations d'aide pour une commande spécifique. Utilisez la commande QUIT pour quitter l'outil de ligne de commande.
