Comment utiliser le type de données HyperLogLog dans Redis
1. Le principe d'HyperLogLog
Redis HyperLogLog utilise un algorithme probabiliste, l'algorithme HyperLogLog, pour estimer la cardinalité. En utilisant un ensemble de fonctions de hachage et un tableau de bits de longueur m, HyperLogLog est capable d'estimer le nombre d'éléments uniques dans un ensemble.
Dans l'algorithme HyperLogLog, chaque élément est haché, et après avoir converti la valeur de hachage en binaire, chaque élément est noté en fonction du nombre de 1 dans le préfixe de chaîne binaire. Par exemple, si la valeur de hachage d'un élément est 01110100011, alors le nombre de 1 dans le préfixe est 3, donc dans l'algorithme HyperLogLog, le score de cet élément est 3.
Une fois les scores de tous les éléments comptés, prenez l'inverse de chaque score (1/2^n), puis ajoutez ces réciproques et prenez l'inverse, et vous obtiendrez une estimation de base de cette valeur. C'est le résultat de l'estimation de l'algorithme HyperLogLog.
L'algorithme HyperLogLog échange la taille de la longueur m du tableau de bits, compromettant la mémoire occupée par la structure des données et la précision de la valeur estimée (c'est-à-dire l'erreur estimée), et obtient un résultat cela prend moins de place dans les données et comporte des erreurs plus petites. Un équilibre parfait entre les degrés.
En bref, l'idée principale de l'algorithme HyperLogLog est basée sur des fonctions de hachage et des opérations sur les bits. En convertissant la valeur de hachage en un flux binaire et en comptant le nombre de 0 non significatifs, il peut rapidement estimer. grands ensembles de données Nombre de valeurs uniques. Grâce à l'algorithme hyperloglog, nous sommes en mesure d'identifier rapidement les pages Web en double dans de très grands ensembles de données.
2. Étapes d'utilisation :
Redis HyperLogLog est une structure de données qui peut être utilisée pour estimer le nombre d'éléments dans une collection. Elle peut conserver des quantités massives de données en utilisant. très peu de mémoire. Il est plus précis que les algorithmes d’estimation conventionnels et très rapide lors du traitement de grandes quantités de données.
Un exemple simple, nous pouvons utiliser HyperLogLog pour calculer le nombre d'IP indépendantes visitant le site Web Plus précisément, vous pouvez suivre les étapes suivantes :
- #🎜. 🎜#Créez d'abord une structure de données HyperLogLog :
PFADD hll:unique_ips 127.0.0.1
PFADD hll:unique_ips 127.0.0.1
为每次访问ip添加到unique_ips数据结构中:
PFADD hll:unique_ips 192.168.1.1
获取计算集合中元素数量的近似值:
PFCOUNT hll:unique_ips
可以通过对多个HyperLogLog结构(例如按天或按小时)的合并,来获得更精确的计数。
需要注意的是,HyperLogLog虽然可以节省大量的内存,但它是一种估计算法,误差范围并不是完全精确的,实际使用时应注意其适用范围。
3.实现请求ip去重的浏览量使用示例
4.Jedis客户端使用
1. 添加依赖,引入jedis依赖:
<dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>3.6.0</version> </dependency>
2.创建一个Jedis对象:
Jedis jedis = new Jedis("localhost");
3.向HyperLogLog数据结构添加元素:
jedis.pfadd("hll:unique_ips", "127.0.0.1");
4.获取计算集合中元素数量的近似值:
Long count = jedis.pfcount("hll:unique_ips"); System.out.println(count);
5.可以通过对多个HyperLogLog结构的合并来获得更精确的计数。在Jedis中可以使用PFMERGE
Ajoutez chaque adresse IP d'accès à la structure de données unique_ips : < code >PFADD hll:unique_ips 192.168.1.1
Obtenir une valeur approximative pour calculer le nombre d'éléments dans un ensemble : PFCOUNT hll:unique_ips
#🎜 🎜#

- 4. Utilisation du client Jedis 1. Ajouter des dépendances et introduire jedis Dépendances :
- 2. Créez un objet Jedis : 3. Ajoutez des éléments à la structure de données HyperLogLog :
Config config = new Config(); config.useSingleServer().setAddress("redis://localhost:6379"); RedissonClient redisson = Redisson.create(config);
Copier après la connexion - 4. Obtenez le collection de calculs Nombre approximatif d'éléments : 5. Un décompte plus précis peut être obtenu en fusionnant plusieurs structures HyperLogLog. Dans Jedis, vous pouvez utiliser la commande
uniqueIps.add("127.0.0.1");
Copier après la connexionPFMERGE
pour fusionner la structure de données HyperLogLog : - 5 Redission utilise des dépendances 1. Créez un RedissonClient. objet # 🎜🎜 # # 🎜🎜 # 2. Créez un objet RhyperLoglog # 🎜🎜 # # rrreee # 🎜🎜 # 3.Add élément # 🎜🎜 # rrreee # 🎜🎜 # 4. Obtenez une quantité approximative # 🎜🎜 # # rrreee # 🎜🎜 🎜🎜 # 5. Fusion de plusieurs objets HyperLogLogrrreee
RHyperLogLog<String> uniqueIps1 = redisson.getHyperLogLog("hll:unique_ips1"); RHyperLogLog<String> uniqueIps2 = redisson.getHyperLogLog("hll:unique_ips2"); uniqueIps.mergeWith(uniqueIps1, uniqueIps2);
Copier après la connexion - 6. Quelles fonctionnalités et méthodes HyperLogLog fournit-il ? Il a de faibles performances mais prend très peu de mémoire. Prend en charge l'insertion de nouveaux éléments sans comptage répété.
- Fournit des instructions pour optimiser l'utilisation de la mémoire et la précision du comptage. Par exemple, PFADD, PFCOUNT, PFMERGE et d'autres instructions.
- Être capable d'estimer le nombre d'éléments différents dans un ensemble de données, c'est-à-dire la cardinalité de l'ensemble.
- Prend en charge les opérations de fusion sur plusieurs objets HyperLogLog pour obtenir une approximation de la cardinalité totale de ces collections.
- Méthodes couramment utilisées dans HyperLogLog :
Compter les pages vues - Dans les applications Web, HyperLogLog peut être utilisé pour compter le nombre de visiteurs uniques pour chaque page. Utilisez la technologie HyperLogLog pour calculer le nombre moyen de visites sur cette page sur différentes périodes.
HyperLogLog a une utilité significative dans l'analyse du nombre d'utilisateurs dans les collections de Big Data. Une structure de données basée sur les probabilités est particulièrement efficace lorsqu'il s'agit d'ensembles de données tels que des identifiants d'utilisateur uniques. HyperLogLog n'enregistre qu'un nombre limité de valeurs de hachage après le hachage et est capable de déduire la taille de l'ensemble de données.
Compter les clics publicitaires - Pour l'analyse publicitaire sur un site Web ou une application, HyperLogLog peut être utilisé pour capturer le nombre de clics effectifs, c'est-à-dire le nombre de clics non dupliqués ou uniques.
jedis.pfmerge("hll:unique_ips", "hll:unique_ips1", "hll:unique_ips2", "hll:unique_ips3");
RHyperLogLog<String> uniqueIps = redisson.getHyperLogLog("hll:unique_ips");
long approximateCount = uniqueIps.count(); System.out.println(approximateCount);
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le mode Redis Cluster déploie les instances Redis sur plusieurs serveurs grâce à la rupture, à l'amélioration de l'évolutivité et de la disponibilité. Les étapes de construction sont les suivantes: Créez des instances de redis étranges avec différents ports; Créer 3 instances Sentinel, Moniteur Redis Instances et basculement; Configurer les fichiers de configuration Sentinel, ajouter des informations d'instance Redis de surveillance et des paramètres de basculement; Configurer les fichiers de configuration d'instance Redis, activer le mode de cluster et spécifier le chemin du fichier d'informations de cluster; Créer un fichier nœuds.conf, contenant des informations de chaque instance redis; Démarrez le cluster, exécutez la commande CREATE pour créer un cluster et spécifiez le nombre de répliques; Connectez-vous au cluster pour exécuter la commande d'informations de cluster pour vérifier l'état du cluster; faire

L'utilisation de la directive Redis nécessite les étapes suivantes: Ouvrez le client Redis. Entrez la commande (Verbe Key Value). Fournit les paramètres requis (varie de l'instruction à l'instruction). Appuyez sur Entrée pour exécuter la commande. Redis renvoie une réponse indiquant le résultat de l'opération (généralement OK ou -err).

Comment effacer les données Redis: utilisez la commande flushall pour effacer toutes les valeurs de clé. Utilisez la commande flushdb pour effacer la valeur clé de la base de données actuellement sélectionnée. Utilisez SELECT pour commuter les bases de données, puis utilisez FlushDB pour effacer plusieurs bases de données. Utilisez la commande del pour supprimer une clé spécifique. Utilisez l'outil Redis-CLI pour effacer les données.

Redis utilise une architecture filetée unique pour fournir des performances élevées, une simplicité et une cohérence. Il utilise le multiplexage d'E / S, les boucles d'événements, les E / S non bloquantes et la mémoire partagée pour améliorer la concurrence, mais avec des limites de limitations de concurrence, un point d'échec unique et inadapté aux charges de travail à forte intensité d'écriture.

La meilleure façon de comprendre le code source redis est d'aller étape par étape: familiarisez-vous avec les bases de Redis. Sélectionnez un module ou une fonction spécifique comme point de départ. Commencez par le point d'entrée du module ou de la fonction et affichez le code ligne par ligne. Affichez le code via la chaîne d'appel de fonction. Familiez les structures de données sous-jacentes utilisées par Redis. Identifiez l'algorithme utilisé par Redis.

Pour lire une file d'attente à partir de Redis, vous devez obtenir le nom de la file d'attente, lire les éléments à l'aide de la commande LPOP et traiter la file d'attente vide. Les étapes spécifiques sont les suivantes: Obtenez le nom de la file d'attente: Nommez-le avec le préfixe de "Fitre:" tel que "Fitre: My-Quyue". Utilisez la commande LPOP: éjectez l'élément de la tête de la file d'attente et renvoyez sa valeur, telle que la file d'attente LPOP: My-Queue. Traitement des files d'attente vides: si la file d'attente est vide, LPOP renvoie NIL et vous pouvez vérifier si la file d'attente existe avant de lire l'élément.

Pour afficher toutes les touches dans Redis, il existe trois façons: utilisez la commande Keys pour retourner toutes les clés qui correspondent au modèle spécifié; Utilisez la commande SCAN pour itérer les touches et renvoyez un ensemble de clés; Utilisez la commande info pour obtenir le nombre total de clés.

Redis utilise des tables de hachage pour stocker les données et prend en charge les structures de données telles que les chaînes, les listes, les tables de hachage, les collections et les collections ordonnées. Redis persiste les données via des instantanés (RDB) et ajoutez les mécanismes d'écriture uniquement (AOF). Redis utilise la réplication maître-esclave pour améliorer la disponibilité des données. Redis utilise une boucle d'événement unique pour gérer les connexions et les commandes pour assurer l'atomicité et la cohérence des données. Redis définit le temps d'expiration de la clé et utilise le mécanisme de suppression paresseux pour supprimer la clé d'expiration.
