Maison > base de données > Redis > Installation de Redis5 BloomFilter sous mac et comment l'utiliser avec python

Installation de Redis5 BloomFilter sous mac et comment l'utiliser avec python

WBOY
Libérer: 2023-05-30 08:01:05
avant
1115 Les gens l'ont consulté

Installez et utilisez le filtre Bloom

Installez et utilisez le filtre Bloom (BloomFilter) sur Redis 5.x sur Centos7

1 进入redis安装目录:cd /usr/local/redis-5.0.4
2. 下载插件: git clone https://github.com/RedisBloom/RedisBloom.git  
	# https://github.com/RedisBloom/RedisBloom 如果慢 可以使用外网访问
3. 进入插件目录: cd redisbloom/  (重命名之前为RedisBloom)
4. 执行: make
5. 修改 redis.conf,增加配置: loadmodule /usr/local/redis-5.0.4/redisbloom/redisbloom.so
6. 启动redis:  src/redis-server ./redis.conf
7. 连接客户端: src/redis-cli -p 6379 
8. 测试,先后执行: bf.add users francis     bf.exists users francis  
9. 更多内容可参考: https://oss.redislabs.com/redisbloom/
Copier après la connexion

Utilisation de python
1 La première méthode consiste à vous connecter à Redis à l'aide d'instructions natives

from redis import StrictRedis
from django.conf import settings


class BfRedis:
    def __init__(self, db, host=settings.BF_REDIS_HOST, port=settings.BF_REDIS_PORT, password=settings.BF_REDIS_PASSWORD):
        self.client = StrictRedis(db=db, host=host, port=port, password=password)

    def bf_init(self, key: str, error_rate: float(), size: int):
        res = self.client.execute_command('BF.RESERVE', key, error_rate, size)
        return res

    def bf_exists(self, key, value):
        res = self.client.execute_command('BF.exists', key, value)
        return res

    def bf_add(self, key, value):
        return self.client.execute_command('BF.add', key, value)

    def bf_local_init(self, task_id, error_rate=0.0001, size=10000):
        """
        """
        key = f'bf_{task_id}'
        if self.client.exists(key):
            return True
        res = self.bf_init(key, error_rate, size)
        return res

    def bf_local_add(self, task_id, value):
        key = f'bf_{task_id}'
        res = self.bf_add(key, value)
        return res

    def bf_local_exists(self, task_id, value):
        key = f'bf_{task_id}'
        res = self.bf_exists(key, value)
        return res

    def bf_local_del(self, task_id):
        key = f'bf_{task_id}'
        res = self.client.delete(key)
        return res
# bf_redis = CrawlRedisClient(0)
Copier après la connexion
  1. Utiliser Python. module d'outils

python2安装:pip install pybloom
python3安装:pip install pybloom-live
Copier après la connexion

demo

from pybloom import BloomFilter, ScalableBloomFilter
bf = BloomFilter(capacity=10000, error_rate=0.001)
bf.add('test')
print 'test' in bf
sbf = ScalableBloomFilter(mode=ScalableBloomFilter.SMALL_SET_GROWTH)
sbf.add('dddd')
print 'ddd' in sbf
Copier après la connexion

BloomFilter是一个定容的过滤器,error_rate是指最大的误报率是0.1%,而ScalableBloomFilter是一个不定容量的布隆过滤器,它可以不断添加元素。addLa méthode consiste à ajouter l'élément si l'élément est déjà dans le filtre bloom, retournez true. Si ce n'est pas le cas, retournez fasle et ajoutez l'élément au filtre. Pour déterminer si un élément est dans le filtre, utilisez simplement l'opérateur in.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:yisu.com
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal