Maison > développement back-end > Golang > le corps du texte

Technologie MapReduce en langage Go

WBOY
Libérer: 2023-06-01 10:31:58
original
1276 Les gens l'ont consulté

Avec la croissance du volume de données et l'augmentation des exigences de traitement, certaines technologies de traitement de données sont également devenues populaires. MapReduce est une très bonne technologie de traitement de données distribuée évolutive. En tant que langage émergent, le langage Go a progressivement commencé à prendre en charge MapReduce. Dans cet article, nous présenterons la technologie MapReduce en langage Go.

Qu'est-ce que MapReduce ?

MapReduce est un modèle de programmation permettant de traiter des ensembles de données à grande échelle. Il a été initialement proposé par Google pour prendre en charge la construction d'index pour les robots d'exploration Web. L'idée de base de MapReduce est de diviser l'ensemble de données en plusieurs petits blocs de données, d'effectuer des fonctions de mappage sur ces petits blocs de données et d'effectuer des fonctions de réduction sur les résultats de sortie de la fonction de mappage. Généralement, ce processus est effectué sur un cluster distribué, chaque nœud effectuant sa propre partie de la tâche et le résultat final étant fusionné sur tous les nœuds.

Comment utiliser MapReduce dans Go ?

Le langage Go offre un moyen pratique d'utiliser MapReduce dans un environnement distribué. La bibliothèque standard de Go fournit un framework MapReduce qui peut faciliter le traitement distribué des données.

Le framework MapReduce de Go comprend 3 composants :

  1. Fonction Map : Cette fonction fournit un traitement de partitionnement de l'ensemble de données d'entrée. La fonction Map divise l'ensemble de données en plusieurs petits morceaux et renvoie une tranche de paires clé/valeur. Chaque paire clé/valeur représente un résultat de calcul.
  2. Fonction Réduire : Cette fonction reçoit la tranche de paires clé/valeur renvoyée par la fonction Map et agrège les paires clé/valeur. La sortie de la fonction Réduire est une nouvelle tranche de paires clé/valeur.
  3. Fonction Job : Cette fonction définit tous les paramètres requis par la tâche MapReduce, tels que le chemin des données d'entrée, la fonction Map, la fonction Réduire, etc.

En utilisant le framework MapReduce de Go, nous devons suivre les étapes suivantes :

  1. Implémenter la fonction Map et la fonction Réduire.
  2. Déclarez un objet Job et définissez des paramètres tels que le chemin des données d'entrée, la fonction Map et la fonction Réduire.
  3. Appelez la fonction Run de l'objet Job pour exécuter des tâches MapReduce dans un environnement distribué.

Ce qui suit est un exemple de code simple :

package main

import (
    "fmt"
    "strconv"
    "strings"

    "github.com/dustin/go-humanize"
    "github.com/syndtr/goleveldb/leveldb"
    "github.com/syndtr/goleveldb/leveldb/util"
)

func mapper(data []byte) (res []leveldb.KeyValue, err error) {
    lines := strings.Split(string(data), "
")
    for _, line := range lines {
        if len(line) == 0 {
            continue
        }
        fields := strings.Fields(line)
        if len(fields) != 2 {
            continue
        }
        k, err := strconv.Atoi(fields[1])
        if err != nil {
            continue
        }
        v, err := humanize.ParseBytes(fields[0])
        if err != nil {
            continue
        }
        res = append(res, leveldb.KeyValue{
            Key:   []byte(fields[1]),
            Value: []byte(strconv.Itoa(int(v))),
        })
    }
    return
}

func reducer(key []byte, values [][]byte) (res []leveldb.KeyValue, err error) {
    var total int
    for _, v := range values {
        i, _ := strconv.Atoi(string(v))
        total += i
    }
    res = []leveldb.KeyValue{
        leveldb.KeyValue{
            Key:   key,
            Value: []byte(strconv.Itoa(total)),
        },
    }
    return
}

func main() {
    db, err := leveldb.OpenFile("/tmp/data", nil)
    if err != nil {
        panic(err)
    }
    defer db.Close()

    job := &util.Job{
        Name:   "word-count",
        NumMap: 10,
        Map: func(data []byte, h util.Handler) (err error) {
            kvs, err := mapper(data)
            if err != nil {
                return err
            }
            h.ServeMap(kvs)
            return
        },
        NumReduce: 2,
        Reduce: func(key []byte, values [][]byte, h util.Handler) (err error) {
            kvs, err := reducer(key, values)
            if err != nil {
                return err
            }
            h.ServeReduce(kvs)
            return
        },
        Input:    util.NewFileInput("/tmp/data/raw"),
        Output:   util.NewFileOutput("/tmp/data/output"),
        MapBatch: 100,
    }
    err = job.Run()
    if err != nil {
        panic(err)
    }

    fmt.Println("MapReduce task done")
}
Copier après la connexion

Dans cet exemple, nous implémentons un simple programme WordCount pour compter les mots dans la quantité de fichiers texte. Parmi elles, la fonction mapper est utilisée pour diviser les données d'entrée en morceaux et renvoyer des tranches de paire clé/valeur ; la fonction de réduction est utilisée pour agréger les paires clé/valeur et renvoyer de nouvelles tranches de paire clé/valeur. Ensuite, nous avons déclaré un objet Job et défini des paramètres tels que la fonction Map et la fonction Réduire. Enfin, nous appelons la fonction Run de l'objet Job pour exécuter la tâche MapReduce dans un environnement distribué.

Summary

MapReduce est une technologie de traitement de données distribué très pratique qui peut être utilisée pour traiter des ensembles de données à grande échelle. Le langage Go, en tant que langage de programmation émergent, a également commencé à prendre en charge MapReduce. Dans cet article, nous présentons la méthode d'utilisation de MapReduce dans Go, y compris les étapes d'implémentation de la fonction Map et de la fonction Reduction, de la déclaration de l'objet Job et de l'appel de la fonction Run de l'objet Job. J'espère que cet article pourra vous aider à comprendre la technologie MapReduce.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal