Qu'est-ce que l'algorithme PCA en Python ?
PCA (Principal Component Analysis) est un algorithme utilisé pour la réduction de dimensionnalité dans l'apprentissage automatique et l'analyse de données. Il est souvent utilisé pour compresser et visualiser des données de grande dimension. En Python, nous pouvons utiliser la bibliothèque scikit-learn pour implémenter l'algorithme PCA.
1. Principe de PCA
L'idée centrale de l'algorithme PCA est la réduction de dimensionnalité, c'est-à-dire la conversion de données de grande dimension en données de faible dimension pour faciliter l'analyse et la visualisation des données. L'algorithme PCA mappe des données de grande dimension dans un espace de faible dimension via une transformation linéaire, atteignant finalement l'objectif de réduction de dimensionnalité.
Plus précisément, dans l'algorithme PCA, nous devons d'abord déterminer la direction avec la plus grande variance, qui est la « première composante principale ». Ensuite, nous voulons trouver la deuxième direction avec la plus grande variance, qui est la direction orthogonale à la première composante principale. Cette direction est la « deuxième composante principale ». Par analogie, nous pouvons trouver K composants principaux pour construire un nouveau système de coordonnées, mapper les données d'origine sur ce nouveau système de coordonnées de basse dimension, et enfin obtenir les données de dimension réduite.
2. Implémentation de l'algorithme PCA dans scikit-learn
En Python, nous pouvons utiliser la bibliothèque PCA de scikit-learn pour implémenter l'algorithme PCA.
(1) Importer la bibliothèque PCA
depuis sklearn.decomposition importer PCA
(2) Préparer les données
Avant d'utiliser l'algorithme PCA, nous devons d'abord préparer les données. Supposons que nous ayons un ensemble de données contenant 1 000 échantillons, chaque échantillon possède 20 caractéristiques, c'est-à-dire des données à 20 dimensions. Nous pouvons ensuite représenter cet ensemble de données sous la forme d’une matrice X de 1 000 x 20.
(3) Créer un objet PCA
Nous pouvons créer un objet PCA et définir le nombre de dimensions qui doivent être réduites. Ici, nous fixons le nombre de dimensions à 2.
pca = PCA(n_components=2)
(4) Ajustement des données
Nous pouvons utiliser la méthode fit() pour projeter les données dans l'espace des composants principaux et obtenir de nouvelles données de faible dimension.
newX = pca.fit_transform(X)
(5) Visualisation des données dimensionnellement réduites
Enfin, nous pouvons utiliser la bibliothèque matplotlib pour visualiser les données dimensionnellement réduites.
importer matplotlib.pyplot en tant que plt
plt.scatter(newX[:,0], newX[:,1])
plt.show()
3 Les scénarios d'application de l'algorithme PCA
L'algorithme PCA est souvent utilisé. Dans les scénarios suivants :
(1) Traitement d'image : La compression de données d'image de grande dimension dans un espace de faible dimension peut efficacement économiser de l'espace de stockage et des ressources informatiques.
(2) Réduction de la dimensionnalité des données : Lorsque la dimension des données est très élevée, cela entraînera des difficultés de calcul et de visualisation. Grâce à l'algorithme PCA, nous pouvons réduire la dimensionnalité des données de grande dimension à une plage gérable.
(3) Extraction de fonctionnalités : dans l'apprentissage automatique, l'extraction de fonctionnalités est une étape importante dans la formation du modèle. Grâce à l'algorithme PCA, nous pouvons extraire les caractéristiques les plus importantes des données originales pour construire un meilleur modèle.
4. Résumé
L'algorithme PCA est un algorithme de réduction de dimensionnalité couramment utilisé et est largement utilisé dans l'apprentissage automatique et l'analyse de données. La bibliothèque scikit-learn en Python fournit une méthode d'implémentation simple de l'algorithme PCA, rendant l'algorithme PCA plus facile à appliquer. J'espère que cet article vous aidera à comprendre l'algorithme PCA.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds





PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

PHP est originaire en 1994 et a été développé par Rasmuslerdorf. Il a été utilisé à l'origine pour suivre les visiteurs du site Web et a progressivement évolué en un langage de script côté serveur et a été largement utilisé dans le développement Web. Python a été développé par Guidovan Rossum à la fin des années 1980 et a été publié pour la première fois en 1991. Il met l'accent sur la lisibilité et la simplicité du code, et convient à l'informatique scientifique, à l'analyse des données et à d'autres domaines.

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.
