Avec le développement continu et l'application généralisée de la technologie de vision industrielle, Python est devenu l'un des langages de programmation les plus populaires. Les bibliothèques de vision industrielle de Python ont également progressivement mûri, comme OpenCV et Pillow. Dans cet article, vous apprendrez à utiliser les bibliothèques de vision industrielle en Python.
Avant de commencer à utiliser la bibliothèque de vision industrielle, vous devez installer la bibliothèque correspondante. Parmi elles, OpenCV et Pillow sont les bibliothèques de vision industrielle les plus couramment utilisées.
Avant d'installer OpenCV, vous devez d'abord installer la bibliothèque numpy. Vous pouvez l'installer via la commande suivante :
pip install numpy
#🎜. 🎜##🎜🎜 #Ensuite, vous pouvez installer la bibliothèque OpenCV : pip install numpy
然后,可以安装OpenCV库:
pip install opencv-python
安装Pillow库较为简单,只需要执行以下命令:
pip install pillow
pip install opencv-python
pip install Pillow
import cv2 # 读取图像 img = cv2.imread('image.jpg') # 显示图像 cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows()
from PIL import Image # 读取图像 img = Image.open('image.jpg') # 显示图像 img.show()
Opération d'image
En plus de lire et d'afficher des images, la bibliothèque de vision industrielle peut également effectuer diverses opérations sur les images. Voici quelques opérations courantes sur l'image : 3.1 Redimensionner l'image Le code pour redimensionner l'image à l'aide de la bibliothèque OpenCV est le suivant :import cv2 # 读取图像 img = cv2.imread('image.jpg') # 缩小图像至一半大小 resized_img = cv2.resize(img, (0,0), fx=0.5, fy=0.5) # 显示缩小后的图像 cv2.imshow('resized image', resized_img) cv2.waitKey(0) cv2.destroyAllWindows()
from PIL import Image # 读取图像 img = Image.open('image.jpg') # 缩小图像至一半大小 resized_img = img.resize((img.size[0]//2, img.size[1]//2)) # 显示缩小后的图像 resized_img.show()
3.2 Traitement des niveaux de gris
Le code pour le traitement des niveaux de gris à l'aide de la bibliothèque OpenCV est le suivant : # 🎜🎜#
import cv2 # 读取图像 img = cv2.imread('image.jpg') # 转换为灰度图像 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像 cv2.imshow('gray image', gray_img) cv2.waitKey(0) cv2.destroyAllWindows()
from PIL import Image # 读取图像 img = Image.open('image.jpg') # 转换为灰度图像 gray_img = img.convert('L') # 显示灰度图像 gray_img.show()
import cv2 # 读取图像 img = cv2.imread('image.jpg') # 进行边缘检测 edge_img = cv2.Canny(img, 100, 200) # 显示边缘检测后的图像 cv2.imshow('edge image', edge_img) cv2.waitKey(0) cv2.destroyAllWindows()
from PIL import Image, ImageFilter # 读取图像 img = Image.open('image.jpg') # 进行边缘检测 edge_img = img.filter(ImageFilter.FIND_EDGES) # 显示边缘检测后的图像 edge_img.show()
Ce qui précède présente les opérations de base de l'utilisation de la bibliothèque de vision industrielle en Python, les lecteurs peuvent choisir d'utiliser différentes bibliothèques de vision industrielle et méthodes de manipulation d'images en fonction de vos propres besoins. Cependant, il convient de noter que lorsque vous utilisez des bibliothèques de vision industrielle, vous devez faire attention à la sécurité et à la légalité du code pour éviter l'injection de code et d'autres problèmes de sécurité. #🎜🎜#
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!