Maison développement back-end Tutoriel Python Comment utiliser les techniques de netteté d'image en Python ?

Comment utiliser les techniques de netteté d'image en Python ?

Jun 04, 2023 am 10:10 AM
python 图像处理 锐化

La netteté de l'image est une technique de traitement d'image couramment utilisée qui peut rendre les images plus claires et plus détaillées. En Python, nous pouvons utiliser certaines bibliothèques de traitement d'image courantes pour implémenter des fonctions de netteté d'image. Cet article explique comment utiliser la bibliothèque Pillow, la bibliothèque OpenCV et la bibliothèque Scikit-Image en Python pour la netteté des images.

  1. Utilisez la bibliothèque Pillow pour la netteté des images

La bibliothèque Pillow est une bibliothèque de traitement d'image couramment utilisée en Python, qui fournit une version améliorée de PIL (Python Image Library). La bibliothèque Pillow peut être utilisée pour lire et traiter différents types d'images, telles que JPG, PNG, BMP, etc. Les étapes pour utiliser la bibliothèque Pillow pour la netteté de l'image sont les suivantes :

1) Installez la bibliothèque Pillow

Entrez la commande suivante sur la ligne de commande pour installer la bibliothèque Pillow :

pip install Pillow
Copier après la connexion

2) Lisez l'image

Utilisez le Module Image de la bibliothèque Pillow pour lire l'image. Par exemple, on peut lire une image nommée "test.jpg" :

from PIL import Image

image = Image.open('test.jpg')
Copier après la connexion

3) Améliorer la netteté de l'image

Utilisez le module Filtre de la bibliothèque Pillow pour effectuer des opérations de netteté. Vous pouvez utiliser des filtres tels que le flou, l'amélioration des contours et l'amélioration de la netteté. Ici, nous utilisons le filtre UnsharpMask pour améliorer la netteté de l'image :

from PIL import ImageFilter

sharpened_image = image.filter(ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3))
Copier après la connexion

Dans le code ci-dessus, le paramètre radius spécifie le rayon de flou, le paramètre percent spécifie le pourcentage de netteté et le paramètre seuil spécifie le seuil de netteté.

4) Enregistrez le résultat

Enfin, utilisez la méthode save() pour enregistrer le résultat sous forme d'une nouvelle image :

sharpened_image.save('sharpened_test.jpg')
Copier après la connexion
  1. Utilisez la bibliothèque OpenCV pour la netteté de l'image

La bibliothèque OpenCV est une bibliothèque de vision par ordinateur open source disponible pour diverses tâches de traitement d’image. Les étapes pour utiliser la bibliothèque OpenCV pour la netteté de l'image sont les suivantes :

1) Installez la bibliothèque OpenCV

Entrez la commande suivante sur la ligne de commande pour installer la bibliothèque OpenCV :

pip install opencv-python
Copier après la connexion

2) Lisez l'image

Utilisez le Fonction imread() de la bibliothèque OpenCV pour lire Prendre des photos. Par exemple, on peut lire une image nommée "test.jpg" :

import cv2

image = cv2.imread('test.jpg')
Copier après la connexion

3) Améliorer la netteté de l'image

Utilisez la fonction Laplacienne de la bibliothèque OpenCV pour améliorer la netteté de l'image. Le code est le suivant :

import cv2

kernel_size = 3
scale = 1
delta = 0
ddepth = cv2.CV_16S

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (3, 3), 0)
dst = cv2.Laplacian(gray, ddepth, ksize=kernel_size, scale=scale, delta=delta)
absdst = cv2.convertScaleAbs(dst)
Copier après la connexion

Dans le code ci-dessus, le paramètre kernel_size spécifie la taille de l'opérateur, le paramètre scale spécifie le facteur de mise à l'échelle, le paramètre delta spécifie le décalage et le paramètre ddegree spécifie la profondeur de sortie.

4) Enregistrez le résultat

Enfin, utilisez la fonction imwrite() pour enregistrer le résultat sous forme d'une nouvelle image :

cv2.imwrite('sharpened_test.jpg', absdst)
Copier après la connexion
  1. Utilisez la bibliothèque Scikit-Image pour la netteté de l'image

La bibliothèque Scikit-Image est un Python Bibliothèque de traitement d'image qui fournit divers algorithmes de traitement d'image. Les étapes pour utiliser la bibliothèque Scikit-Image pour la netteté de l'image sont les suivantes :

1) Installez la bibliothèque Scikit-Image

Entrez la commande suivante dans la ligne de commande pour installer la bibliothèque Scikit-Image :

pip install scikit-image
Copier après la connexion

2) Lire l'image

Utilisez Scikit- Le module io de la bibliothèque d'images lit les images. Par exemple, on peut lire une image nommée "test.jpg" :

from skimage import io

image = io.imread('test.jpg')
Copier après la connexion

3) Améliorer la netteté de l'image

Utilisez le module de transformation de la bibliothèque Scikit-Image pour effectuer l'opération de netteté. Ici, nous utilisons la fonction unsharp_mask() pour améliorer la netteté de l'image :

from skimage import filters

sharpened_image = filters.unsharp_mask(image, radius=2, amount=1.5, multichannel=True)
Copier après la connexion

Dans le code ci-dessus, le paramètre radius spécifie la taille du noyau de convolution, le paramètre montant spécifie le degré de netteté et le paramètre multicanal spécifie si c'est une image en couleur.

4) Enregistrez le résultat

Enfin, utilisez la fonction imsave() du module io pour enregistrer le résultat sous une nouvelle image :

io.imsave('sharpened_test.jpg', sharpened_image)
Copier après la connexion

Conclusion

Cet article présente l'utilisation de la bibliothèque Pillow, de la bibliothèque OpenCV et de Scikit -Méthode Image dans la bibliothèque Python pour la netteté de l'image. Ces bibliothèques fournissent divers algorithmes et fonctions pour traiter les images, que nous pouvons choisir d'utiliser en fonction de nos besoins. La netteté de l’image est une partie importante du traitement de l’image. Elle peut améliorer la qualité et la clarté des images et offre de larges perspectives d’application dans des applications pratiques.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: différents paradigmes expliqués PHP et Python: différents paradigmes expliqués Apr 18, 2025 am 12:26 AM

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

Choisir entre PHP et Python: un guide Choisir entre PHP et Python: un guide Apr 18, 2025 am 12:24 AM

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

Peut-on exécuter le code sous Windows 8 Peut-on exécuter le code sous Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

L'extension VScode est-elle malveillante? L'extension VScode est-elle malveillante? Apr 15, 2025 pm 07:57 PM

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

Le code Visual Studio peut-il être utilisé dans Python Le code Visual Studio peut-il être utilisé dans Python Apr 15, 2025 pm 08:18 PM

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

Peut-on utiliser pour mac Peut-on utiliser pour mac Apr 15, 2025 pm 07:36 PM

VS Code est disponible sur Mac. Il a des extensions puissantes, l'intégration GIT, le terminal et le débogueur, et offre également une multitude d'options de configuration. Cependant, pour des projets particulièrement importants ou un développement hautement professionnel, le code vs peut avoir des performances ou des limitations fonctionnelles.

Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Python vs JavaScript: la courbe d'apprentissage et la facilité d'utilisation Apr 16, 2025 am 12:12 AM

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

Le code Visual Studio peut-il exécuter Python Le code Visual Studio peut-il exécuter Python Apr 15, 2025 pm 08:00 PM

VS Code peut non seulement exécuter Python, mais fournit également des fonctions puissantes, notamment: l'identification automatique des fichiers Python après l'installation d'extensions de Python, fournissant l'achèvement du code, la mise en évidence de la syntaxe, le débogage et d'autres fonctions. S'appuyant sur l'environnement Python installé, les extensions agissent comme l'édition de connexion de pont et l'environnement Python. Les fonctions de débogage incluent le réglage des points d'arrêt, le débogage étape par étape, la visualisation des valeurs variables et l'amélioration de l'efficacité de débogage. Le terminal intégré prend en charge l'exécution de commandes complexes telles que les tests unitaires et la gestion des packages. Prend en charge la configuration étendue et améliore les fonctionnalités telles que la mise en forme du code, l'analyse et le contrôle de version.

See all articles