


Comment utiliser les techniques de netteté d'image en Python ?
La netteté de l'image est une technique de traitement d'image couramment utilisée qui peut rendre les images plus claires et plus détaillées. En Python, nous pouvons utiliser certaines bibliothèques de traitement d'image courantes pour implémenter des fonctions de netteté d'image. Cet article explique comment utiliser la bibliothèque Pillow, la bibliothèque OpenCV et la bibliothèque Scikit-Image en Python pour la netteté des images.
- Utilisez la bibliothèque Pillow pour la netteté des images
La bibliothèque Pillow est une bibliothèque de traitement d'image couramment utilisée en Python, qui fournit une version améliorée de PIL (Python Image Library). La bibliothèque Pillow peut être utilisée pour lire et traiter différents types d'images, telles que JPG, PNG, BMP, etc. Les étapes pour utiliser la bibliothèque Pillow pour la netteté de l'image sont les suivantes :
1) Installez la bibliothèque Pillow
Entrez la commande suivante sur la ligne de commande pour installer la bibliothèque Pillow :
pip install Pillow
2) Lisez l'image
Utilisez le Module Image de la bibliothèque Pillow pour lire l'image. Par exemple, on peut lire une image nommée "test.jpg" :
from PIL import Image image = Image.open('test.jpg')
3) Améliorer la netteté de l'image
Utilisez le module Filtre de la bibliothèque Pillow pour effectuer des opérations de netteté. Vous pouvez utiliser des filtres tels que le flou, l'amélioration des contours et l'amélioration de la netteté. Ici, nous utilisons le filtre UnsharpMask pour améliorer la netteté de l'image :
from PIL import ImageFilter sharpened_image = image.filter(ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3))
Dans le code ci-dessus, le paramètre radius spécifie le rayon de flou, le paramètre percent spécifie le pourcentage de netteté et le paramètre seuil spécifie le seuil de netteté.
4) Enregistrez le résultat
Enfin, utilisez la méthode save() pour enregistrer le résultat sous forme d'une nouvelle image :
sharpened_image.save('sharpened_test.jpg')
- Utilisez la bibliothèque OpenCV pour la netteté de l'image
La bibliothèque OpenCV est une bibliothèque de vision par ordinateur open source disponible pour diverses tâches de traitement d’image. Les étapes pour utiliser la bibliothèque OpenCV pour la netteté de l'image sont les suivantes :
1) Installez la bibliothèque OpenCV
Entrez la commande suivante sur la ligne de commande pour installer la bibliothèque OpenCV :
pip install opencv-python
2) Lisez l'image
Utilisez le Fonction imread() de la bibliothèque OpenCV pour lire Prendre des photos. Par exemple, on peut lire une image nommée "test.jpg" :
import cv2 image = cv2.imread('test.jpg')
3) Améliorer la netteté de l'image
Utilisez la fonction Laplacienne de la bibliothèque OpenCV pour améliorer la netteté de l'image. Le code est le suivant :
import cv2 kernel_size = 3 scale = 1 delta = 0 ddepth = cv2.CV_16S gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (3, 3), 0) dst = cv2.Laplacian(gray, ddepth, ksize=kernel_size, scale=scale, delta=delta) absdst = cv2.convertScaleAbs(dst)
Dans le code ci-dessus, le paramètre kernel_size spécifie la taille de l'opérateur, le paramètre scale spécifie le facteur de mise à l'échelle, le paramètre delta spécifie le décalage et le paramètre ddegree spécifie la profondeur de sortie.
4) Enregistrez le résultat
Enfin, utilisez la fonction imwrite() pour enregistrer le résultat sous forme d'une nouvelle image :
cv2.imwrite('sharpened_test.jpg', absdst)
- Utilisez la bibliothèque Scikit-Image pour la netteté de l'image
La bibliothèque Scikit-Image est un Python Bibliothèque de traitement d'image qui fournit divers algorithmes de traitement d'image. Les étapes pour utiliser la bibliothèque Scikit-Image pour la netteté de l'image sont les suivantes :
1) Installez la bibliothèque Scikit-Image
Entrez la commande suivante dans la ligne de commande pour installer la bibliothèque Scikit-Image :
pip install scikit-image
2) Lire l'image
Utilisez Scikit- Le module io de la bibliothèque d'images lit les images. Par exemple, on peut lire une image nommée "test.jpg" :
from skimage import io image = io.imread('test.jpg')
3) Améliorer la netteté de l'image
Utilisez le module de transformation de la bibliothèque Scikit-Image pour effectuer l'opération de netteté. Ici, nous utilisons la fonction unsharp_mask() pour améliorer la netteté de l'image :
from skimage import filters sharpened_image = filters.unsharp_mask(image, radius=2, amount=1.5, multichannel=True)
Dans le code ci-dessus, le paramètre radius spécifie la taille du noyau de convolution, le paramètre montant spécifie le degré de netteté et le paramètre multicanal spécifie si c'est une image en couleur.
4) Enregistrez le résultat
Enfin, utilisez la fonction imsave() du module io pour enregistrer le résultat sous une nouvelle image :
io.imsave('sharpened_test.jpg', sharpened_image)
Conclusion
Cet article présente l'utilisation de la bibliothèque Pillow, de la bibliothèque OpenCV et de Scikit -Méthode Image dans la bibliothèque Python pour la netteté de l'image. Ces bibliothèques fournissent divers algorithmes et fonctions pour traiter les images, que nous pouvons choisir d'utiliser en fonction de nos besoins. La netteté de l’image est une partie importante du traitement de l’image. Elle peut améliorer la qualité et la clarté des images et offre de larges perspectives d’application dans des applications pratiques.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP est principalement la programmation procédurale, mais prend également en charge la programmation orientée objet (POO); Python prend en charge une variété de paradigmes, y compris la POO, la programmation fonctionnelle et procédurale. PHP convient au développement Web, et Python convient à une variété d'applications telles que l'analyse des données et l'apprentissage automatique.

PHP convient au développement Web et au prototypage rapide, et Python convient à la science des données et à l'apprentissage automatique. 1.Php est utilisé pour le développement Web dynamique, avec une syntaxe simple et adapté pour un développement rapide. 2. Python a une syntaxe concise, convient à plusieurs champs et a un écosystème de bibliothèque solide.

VS Code peut fonctionner sur Windows 8, mais l'expérience peut ne pas être excellente. Assurez-vous d'abord que le système a été mis à jour sur le dernier correctif, puis téléchargez le package d'installation VS Code qui correspond à l'architecture du système et l'installez comme invité. Après l'installation, sachez que certaines extensions peuvent être incompatibles avec Windows 8 et doivent rechercher des extensions alternatives ou utiliser de nouveaux systèmes Windows dans une machine virtuelle. Installez les extensions nécessaires pour vérifier si elles fonctionnent correctement. Bien que le code VS soit possible sur Windows 8, il est recommandé de passer à un système Windows plus récent pour une meilleure expérience de développement et une meilleure sécurité.

Les extensions de code vs posent des risques malveillants, tels que la cachette de code malveillant, l'exploitation des vulnérabilités et la masturbation comme des extensions légitimes. Les méthodes pour identifier les extensions malveillantes comprennent: la vérification des éditeurs, la lecture des commentaires, la vérification du code et l'installation avec prudence. Les mesures de sécurité comprennent également: la sensibilisation à la sécurité, les bonnes habitudes, les mises à jour régulières et les logiciels antivirus.

VS Code peut être utilisé pour écrire Python et fournit de nombreuses fonctionnalités qui en font un outil idéal pour développer des applications Python. Il permet aux utilisateurs de: installer des extensions Python pour obtenir des fonctions telles que la réalisation du code, la mise en évidence de la syntaxe et le débogage. Utilisez le débogueur pour suivre le code étape par étape, trouver et corriger les erreurs. Intégrez Git pour le contrôle de version. Utilisez des outils de mise en forme de code pour maintenir la cohérence du code. Utilisez l'outil de liaison pour repérer les problèmes potentiels à l'avance.

VS Code est disponible sur Mac. Il a des extensions puissantes, l'intégration GIT, le terminal et le débogueur, et offre également une multitude d'options de configuration. Cependant, pour des projets particulièrement importants ou un développement hautement professionnel, le code vs peut avoir des performances ou des limitations fonctionnelles.

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

VS Code peut non seulement exécuter Python, mais fournit également des fonctions puissantes, notamment: l'identification automatique des fichiers Python après l'installation d'extensions de Python, fournissant l'achèvement du code, la mise en évidence de la syntaxe, le débogage et d'autres fonctions. S'appuyant sur l'environnement Python installé, les extensions agissent comme l'édition de connexion de pont et l'environnement Python. Les fonctions de débogage incluent le réglage des points d'arrêt, le débogage étape par étape, la visualisation des valeurs variables et l'amélioration de l'efficacité de débogage. Le terminal intégré prend en charge l'exécution de commandes complexes telles que les tests unitaires et la gestion des packages. Prend en charge la configuration étendue et améliore les fonctionnalités telles que la mise en forme du code, l'analyse et le contrôle de version.
