Maison développement back-end Tutoriel Python Quelle est la technique d'analyse des composants principaux en Python ?

Quelle est la technique d'analyse des composants principaux en Python ?

Jun 04, 2023 pm 12:40 PM
python 技术 主成分分析

Python est l'un des langages de programmation les plus populaires actuellement, et sa flexibilité et son évolutivité en font l'outil de choix dans le domaine de l'analyse de données. Parmi eux, l'analyse en composantes principales (ACP) est une technologie couramment utilisée de réduction de dimensionnalité des données et d'extraction de fonctionnalités. La mise en œuvre et l'application de l'ACP en Python seront présentées en détail ci-dessous.

PCA est une technique de réduction de dimensionnalité linéaire. Son idée de base est de projeter les données originales dans un espace de faible dimension pour conserver le plus de variance des données. L’avantage est que cela peut réduire la dimensionnalité des données, réduisant ainsi la complexité de calcul et améliorant l’efficacité opérationnelle et la capacité de généralisation du modèle. Dans les applications pratiques, la PCA est souvent utilisée dans la visualisation de données, l'extraction de fonctionnalités, la compression de données et d'autres domaines.

Python fournit une variété de fonctions de bibliothèque et de boîtes à outils pour implémenter PCA, telles que NumPy, SciPy, scikit-learn, etc. Ce qui suit est un exemple de code simple qui montre comment utiliser scikit-learn pour effectuer une PCA :

from sklearn.decomposition import PCA
import numpy as np

# 创建随机样本矩阵
np.random.seed(0)
X = np.random.normal(size=(100, 5))

# 创建PCA实例
pca = PCA(n_components=2)

# 训练模型并输出结果
X_pca = pca.fit_transform(X)
print(X_pca)
Copier après la connexion

Le code ci-dessus génère d'abord une matrice aléatoire X avec 100 lignes et 5 colonnes, puis utilise la PCA pour réduire sa dimensionnalité en deux composants principaux. , et enfin afficher le résultat dimensionnellement réduit X_pca. Ici, le paramètre principal de PCA est n_components, qui représente le nombre de dimensions après réduction de dimensionnalité.

L'utilisation de la PCA pour la visualisation des données est l'une des applications importantes. Les données en haute dimension peuvent généralement être visualisées sous la forme d'un nuage de points bidimensionnel ou tridimensionnel en projetant les données sur les premiers composants principaux bidimensionnels. Voici un exemple de visualisation simple utilisant l'ensemble de données Iris pour montrer la distribution des différents types de fleurs d'iris :

import matplotlib.pyplot as plt
from sklearn import datasets

# 加载Iris数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 使用PCA降维到二维空间
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

# 绘制二维散点图
colors = ['blue', 'red', 'green']
for i in range(len(colors)):
    plt.scatter(X_pca[y==i, 0], X_pca[y==i, 1], c=colors[i], label=iris.target_names[i])
    
plt.legend()
plt.show()
Copier après la connexion

Le code ci-dessus charge d'abord l'ensemble de données Iris, puis utilise PCA pour le réduire à un espace bidimensionnel, et enfin utilise scatter points La figure visualise la répartition des différents types de fleurs d'iris dans l'espace 2D.

En plus de la visualisation des données, la PCA peut également être utilisée dans des domaines tels que l'extraction de fonctionnalités et la compression de données. Par exemple, dans le traitement d'images, la PCA peut être utilisée pour extraire les informations sur le sujet d'une image, réduisant ainsi la quantité de stockage et de calcul. Dans le traitement de texte, la PCA peut également être utilisée pour réduire la dimensionnalité des vecteurs de mots, réduisant ainsi la complexité informatique des modèles de formation et de prédiction.

En général, la technologie PCA en Python est un outil très pratique et puissant et a de nombreuses applications dans les domaines de l'analyse de données et de l'apprentissage automatique. En réduisant la dimensionnalité des données et en extrayant des informations sur les fonctionnalités clés, cela peut nous aider à mieux comprendre et traiter des problèmes complexes dans le monde réel.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Commandes de chat et comment les utiliser
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python: exemples de code et comparaison PHP et Python: exemples de code et comparaison Apr 15, 2025 am 12:07 AM

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Comment est la prise en charge du GPU pour Pytorch sur Centos Comment est la prise en charge du GPU pour Pytorch sur Centos Apr 14, 2025 pm 06:48 PM

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Explication détaillée du principe docker Explication détaillée du principe docker Apr 14, 2025 pm 11:57 PM

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Comment entraîner le modèle Pytorch sur Centos Comment entraîner le modèle Pytorch sur Centos Apr 14, 2025 pm 03:03 PM

Une formation efficace des modèles Pytorch sur les systèmes CentOS nécessite des étapes, et cet article fournira des guides détaillés. 1. Préparation de l'environnement: Installation de Python et de dépendance: le système CentOS préinstalle généralement Python, mais la version peut être plus ancienne. Il est recommandé d'utiliser YUM ou DNF pour installer Python 3 et Mettez PIP: sudoyuMupDatePython3 (ou sudodnfupdatepython3), pip3install-upradepip. CUDA et CUDNN (accélération GPU): Si vous utilisez Nvidiagpu, vous devez installer Cudatool

Python vs JavaScript: communauté, bibliothèques et ressources Python vs JavaScript: communauté, bibliothèques et ressources Apr 15, 2025 am 12:16 AM

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Comment choisir la version Pytorch sous Centos Comment choisir la version Pytorch sous Centos Apr 14, 2025 pm 02:51 PM

Lors de la sélection d'une version Pytorch sous CentOS, les facteurs clés suivants doivent être pris en compte: 1. CUDA Version Compatibilité GPU Prise en charge: si vous avez NVIDIA GPU et que vous souhaitez utiliser l'accélération GPU, vous devez choisir Pytorch qui prend en charge la version CUDA correspondante. Vous pouvez afficher la version CUDA prise en charge en exécutant la commande nvidia-SMI. Version CPU: Si vous n'avez pas de GPU ou que vous ne souhaitez pas utiliser de GPU, vous pouvez choisir une version CPU de Pytorch. 2. Version Python Pytorch

Comment faire le prétraitement des données avec Pytorch sur CentOS Comment faire le prétraitement des données avec Pytorch sur CentOS Apr 14, 2025 pm 02:15 PM

Traitez efficacement les données Pytorch sur le système CentOS, les étapes suivantes sont requises: Installation de dépendance: Mettez d'abord à jour le système et installez Python3 et PIP: sudoyuMupdate-anduhuminstallpython3-ysudoyuminstallpython3-pip-y, téléchargez et installez Cudatoolkit et Cudnn à partir du site officiel de Nvidia selon votre version de Centos et GPU. Configuration de l'environnement virtuel (recommandé): utilisez conda pour créer et activer un nouvel environnement virtuel, par exemple: condacreate-n

Comment installer nginx dans Centos Comment installer nginx dans Centos Apr 14, 2025 pm 08:06 PM

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.

See all articles