


Comment utiliser la technologie de segmentation sémantique d'images en Python ?
Avec le développement continu de la technologie de l'intelligence artificielle, la technologie de segmentation sémantique des images est devenue une direction de recherche populaire dans le domaine de l'analyse d'images. Dans la segmentation sémantique d'image, nous segmentons différentes zones d'une image et classons chaque zone pour obtenir une compréhension globale de l'image.
Python est un langage de programmation bien connu. Ses puissantes capacités d'analyse et de visualisation de données en font le premier choix dans le domaine de la recherche sur les technologies d'intelligence artificielle. Cet article expliquera comment utiliser la technologie de segmentation sémantique d'images en Python.
1. Connaissances préalables
Avant d'apprendre à utiliser la technologie de segmentation sémantique d'images en Python, vous devez avoir des connaissances sur l'apprentissage profond et le réseau neuronal convolutif (Convolutional Neural Network) . Network, CNN) et les bases du traitement d'images. Si vous êtes un développeur Python expérimenté mais que vous n'avez aucune expérience en matière d'apprentissage profond et de modèles CNN, il est recommandé d'acquérir d'abord certaines connaissances pertinentes.
2. Préparation
Afin d'utiliser la technologie de segmentation sémantique d'images, nous avons besoin de modèles pré-entraînés. Il existe de nombreux frameworks d'apprentissage profond populaires, tels que Keras, PyTorch et TensorFlow, qui fournissent des modèles pré-entraînés que les développeurs peuvent utiliser.
Dans cet article, nous utiliserons le framework TensorFlow et son modèle global de segmentation sémantique d'images - DeepLab-v3+, ainsi qu'une bibliothèque Python pouvant être utilisée pour traiter des images - la bibliothèque Pillow.
Nous pouvons installer les bibliothèques que nous devons utiliser via la commande suivante :
pip install tensorflow==2.4.0 pip install Pillow
3. Utilisez le réseau DeepLab-v3+ pour la segmentation sémantique des images
DeepLab-v3+ est un modèle de réseau neuronal à convolution profonde efficace pour la segmentation sémantique d'images. Il dispose d'une série de technologies avancées, notamment la convolution dilatée (Dilated Convolution), l'agrégation de données multi-échelles et le champ aléatoire conditionnel (Conditional Random Field, CRF), etc.
La bibliothèque Pillow fournit des outils pratiques pour traiter et lire les fichiers image. Ensuite, nous utiliserons la classe Image de la bibliothèque Pillow pour lire un fichier image. Le code ressemble à ceci :
from PIL import Image im = Image.open('example.jpg')
Ici, nous pouvons remplacer example.jpg par notre propre nom de fichier image.
En utilisant le modèle DeepLab-v3+ et l'image que nous lisons, nous pouvons obtenir un résultat détaillé de segmentation sémantique d'image. Afin d'utiliser le modèle DeepLab-v3+ pré-entraîné, nous devons télécharger le fichier de poids du modèle. Il peut être trouvé sur la page officielle du modèle TensorFlow.
# 导入预训练的 DeepLab-v3+ 模型 from tensorflow.keras.models import Model from tensorflow.keras.layers import Input from tensorflow.keras.applications import MobileNetV2 from tensorflow.keras.layers import Conv2DTranspose, Concatenate, Activation, MaxPooling2D, Conv2D, BatchNormalization, Dropout def create_model(num_classes): # 加载 MobileNetV2 预训练模型 base_model = MobileNetV2(input_shape=(256, 256, 3), include_top=False, weights='imagenet') # 获取对应层输出的张量 low_level_features = base_model.get_layer('block_1_expand_relu').output x = base_model.get_layer('out_relu').output # 通过使用反卷积尺寸进行上采样和空洞卷积,构建 DeepLab-v3+ 系统,并针对特定的数据集来训练其分类器 x = Conv2D(256, (1, 1), activation='relu', padding='same', name='concat_projection')(x) x = Dropout(0.3)(x) x = Conv2DTranspose(128, (3, 3), strides=(2, 2), padding='same', name='decoder_conv0')(x) x = BatchNormalization(name='decoder_bn0')(x) x = Activation('relu', name='decoder_relu0')(x) x = Concatenate(name='decoder_concat0')([x, low_level_features]) x = Conv2D(128, (1, 1), padding='same', name='decoder_conv1')(x) x = Dropout(0.3)(x) x = Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', name='decoder_conv2')(x) x = BatchNormalization(name='decoder_bn2')(x) x = Activation('relu', name='decoder_relu2')(x) x = Conv2D(num_classes, (1, 1), padding='same', name='decoder_conv3')(x) x = Activation('softmax', name='softmax')(x) # 创建 Keras 模型,并返回它 model = Model(inputs=base_model.input, outputs=x) return model
Maintenant que nous avons chargé le modèle avec succès, nous pouvons lancer la segmentation sémantique de l'image. Le code est le suivant :
import numpy as np import urllib.request # 读取图像 urllib.request.urlretrieve('https://www.tensorflow.org/images/surf.jpg', 'image.jpg') image = Image.open('image.jpg') image_array = np.array(image) # 加载训练好的模型 model = create_model(num_classes=21) model.load_weights('deeplabv3_xception_tf_dim_ordering_tf_kernels.h5') print('模型加载成功。') # 将输入图像调整为模型所需形状,并进行语义分割 input_tensor = tf.convert_to_tensor(np.expand_dims(image_array, 0)) output_tensor = model(input_tensor) # 显示语义分割结果 import matplotlib.pyplot as plt parsed_results = output_tensor.numpy().squeeze() parsed_results = np.argmax(parsed_results, axis=2) plt.imshow(parsed_results) plt.show()
Après avoir exécuté ce code, vous obtiendrez une sortie de réseau neuronal avec une distribution de couleurs similaire à celle montrée dans l'exemple.
4. Résumé
Dans cet article, nous avons présenté comment utiliser la technologie de segmentation sémantique d'image en Python et chargé avec succès le modèle DeepLab-v3+ pré-entraîné. Bien entendu, l’exemple utilisé ici n’est qu’une méthode parmi d’autres, et différentes directions de recherche nécessitent différentes méthodes de traitement. Si vous êtes intéressé, explorez ce domaine et utilisez ces techniques dans vos propres projets.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds



Il n'y a pas de fonction de somme intégrée dans le langage C, il doit donc être écrit par vous-même. La somme peut être obtenue en traversant le tableau et en accumulant des éléments: Version de boucle: la somme est calculée à l'aide de la longueur de boucle et du tableau. Version du pointeur: Utilisez des pointeurs pour pointer des éléments de tableau, et un résumé efficace est réalisé grâce à des pointeurs d'auto-incitation. Allouer dynamiquement la version du tableau: allouer dynamiquement les tableaux et gérer la mémoire vous-même, en veillant à ce que la mémoire allouée soit libérée pour empêcher les fuites de mémoire.

Bien que distincts et distincts soient liés à la distinction, ils sont utilisés différemment: distinct (adjectif) décrit le caractère unique des choses elles-mêmes et est utilisée pour souligner les différences entre les choses; Distinct (verbe) représente le comportement ou la capacité de distinction, et est utilisé pour décrire le processus de discrimination. En programmation, distinct est souvent utilisé pour représenter l'unicité des éléments d'une collection, tels que les opérations de déduplication; Distinct se reflète dans la conception d'algorithmes ou de fonctions, tels que la distinction étrange et uniforme des nombres. Lors de l'optimisation, l'opération distincte doit sélectionner l'algorithme et la structure de données appropriés, tandis que l'opération distincte doit optimiser la distinction entre l'efficacité logique et faire attention à l'écriture de code clair et lisible.

Il n'y a pas de salaire absolu pour les développeurs Python et JavaScript, selon les compétences et les besoins de l'industrie. 1. Python peut être davantage payé en science des données et en apprentissage automatique. 2. JavaScript a une grande demande dans le développement frontal et complet, et son salaire est également considérable. 3. Les facteurs d'influence comprennent l'expérience, la localisation géographique, la taille de l'entreprise et les compétences spécifiques.

! x Compréhension! X est un non-opérateur logique dans le langage C. Il booléen la valeur de x, c'est-à-dire que les véritables modifications sont fausses et fausses modifient true. Mais sachez que la vérité et le mensonge en C sont représentés par des valeurs numériques plutôt que par les types booléens, le non-zéro est considéré comme vrai, et seul 0 est considéré comme faux. Par conséquent,! X traite des nombres négatifs de la même manière que des nombres positifs et est considéré comme vrai.

Il n'y a pas de fonction de somme intégrée en C pour la somme, mais il peut être implémenté par: en utilisant une boucle pour accumuler des éléments un par un; Utilisation d'un pointeur pour accéder et accumuler des éléments un par un; Pour les volumes de données importants, envisagez des calculs parallèles.

La page H5 doit être maintenue en continu, en raison de facteurs tels que les vulnérabilités du code, la compatibilité des navigateurs, l'optimisation des performances, les mises à jour de sécurité et les améliorations de l'expérience utilisateur. Des méthodes de maintenance efficaces comprennent l'établissement d'un système de test complet, à l'aide d'outils de contrôle de version, de surveiller régulièrement les performances de la page, de collecter les commentaires des utilisateurs et de formuler des plans de maintenance.

Copier et coller le code n'est pas impossible, mais il doit être traité avec prudence. Des dépendances telles que l'environnement, les bibliothèques, les versions, etc. dans le code peuvent ne pas correspondre au projet actuel, entraînant des erreurs ou des résultats imprévisibles. Assurez-vous de vous assurer que le contexte est cohérent, y compris les chemins de fichier, les bibliothèques dépendantes et les versions Python. De plus, lors de la copie et de la collation du code pour une bibliothèque spécifique, vous devrez peut-être installer la bibliothèque et ses dépendances. Les erreurs courantes incluent les erreurs de chemin, les conflits de version et les styles de code incohérents. L'optimisation des performances doit être redessinée ou refactorisée en fonction de l'objectif d'origine et des contraintes du code. Il est crucial de comprendre et de déboguer le code copié, et de ne pas copier et coller aveuglément.

Méthodes pour additionner les éléments du tableau dans le langage C: Utilisez une boucle pour accumuler des éléments de tableau un par un. Pour les tableaux multidimensionnels, utilisez des boucles imbriquées pour traverser et s'accumuler. Assurez-vous de vérifier attentivement l'index du tableau pour éviter l'accès hors limites, provoquant des accidents du programme.
