Maison Java javaDidacticiel Technologie de calcul distribué et d'analyse de données en Java

Technologie de calcul distribué et d'analyse de données en Java

Jun 08, 2023 pm 05:13 PM
数据分析 技术 分布式计算

Avec l'avènement de l'ère du Big Data, la croissance explosive du volume de données a eu un impact énorme sur les méthodes informatiques traditionnelles. Afin de résoudre ce problème, des technologies de calcul distribué et d’analyse de données ont émergé. En tant que langage de programmation à usage général, Java a montré de bonnes performances dans les domaines de l'informatique distribuée et de l'analyse de données.

1. Technologie informatique distribuée

L'informatique distribuée est une technologie qui divise les tâches informatiques en plusieurs sous-tâches peut être exécutée sur différents ordinateurs, puis leurs résultats de sortie sont fusionnés dans le résultat final. Cette technologie peut améliorer considérablement l’efficacité informatique et l’évolutivité du système.

Dans la technologie informatique distribuée, les outils Java les plus couramment utilisés sont Hadoop et Spark. Hadoop est un framework de traitement distribué Big Data basé sur Java qui peut traiter de grandes quantités de données de manière distribuée et peut stocker et traiter des données sur plusieurs nœuds informatiques. Spark est un autre framework basé sur Java qui fournit un moteur rapide et polyvalent pour le traitement d'ensembles de données à grande échelle pouvant s'exécuter sur un cluster Hadoop.

2. Technologie d'analyse des données

L'analyse des données fait référence à l'utilisation de diverses technologies et outils pour traiter et analyser des données massives afin de découvrir les modèles et les tendances cachés derrière les données. Java dispose également de nombreux excellents outils et frameworks pour l’analyse des données.

  1. Mahout

Mahout est une plate-forme d'apprentissage automatique basée sur Java qui peut être utilisée pour l'exploration de données et l'analyse de données d'ensembles de données à grande échelle. Il fournit de nombreux algorithmes d'apprentissage automatique, notamment le clustering, la classification, etc.

  1. Weka

Weka est un outil d'apprentissage automatique open source basé sur Java qui peut être utilisé pour l'exploration de données, la modélisation prédictive, l'analyse de cluster, etc. Il fournit de nombreux algorithmes de prétraitement des données et d’apprentissage automatique.

  1. ELK

ELK est une solution universelle d'analyse de données de journaux, composée de trois outils de collaboration fluides : Logstash, Elasticsearch et Kibana. Logstash est un collecteur de données de journaux, Elasticsearch est un moteur de recherche et d'analyse distribué et Kibana est une interface Web conviviale qui peut être utilisée pour compter et analyser les données de journaux en temps réel.

3. Conclusion

Java a montré de bonnes performances et une bonne évolutivité dans le domaine de l'informatique distribuée et de l'analyse de données. Divers outils et frameworks open source aident les développeurs Java à traiter et analyser plus rapidement des ensembles de données à grande échelle. Au cours du processus de conception et de mise en œuvre de l'application, les développeurs doivent choisir des outils et des cadres de calcul distribué et d'analyse de données appropriés en fonction de besoins spécifiques afin de garantir les performances et l'évolutivité.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le papier Stable Diffusion 3 est enfin publié, et les détails architecturaux sont révélés. Cela aidera-t-il à reproduire Sora ? Le papier Stable Diffusion 3 est enfin publié, et les détails architecturaux sont révélés. Cela aidera-t-il à reproduire Sora ? Mar 06, 2024 pm 05:34 PM

L'article de StableDiffusion3 est enfin là ! Ce modèle est sorti il ​​y a deux semaines et utilise la même architecture DiT (DiffusionTransformer) que Sora. Il a fait beaucoup de bruit dès sa sortie. Par rapport à la version précédente, la qualité des images générées par StableDiffusion3 a été considérablement améliorée. Il prend désormais en charge les invites multithèmes, et l'effet d'écriture de texte a également été amélioré et les caractères tronqués n'apparaissent plus. StabilityAI a souligné que StableDiffusion3 est une série de modèles avec des tailles de paramètres allant de 800M à 8B. Cette plage de paramètres signifie que le modèle peut être exécuté directement sur de nombreux appareils portables, réduisant ainsi considérablement l'utilisation de l'IA.

Cet article vous suffit pour en savoir plus sur la conduite autonome et la prédiction de trajectoire ! Cet article vous suffit pour en savoir plus sur la conduite autonome et la prédiction de trajectoire ! Feb 28, 2024 pm 07:20 PM

La prédiction de trajectoire joue un rôle important dans la conduite autonome. La prédiction de trajectoire de conduite autonome fait référence à la prédiction de la trajectoire de conduite future du véhicule en analysant diverses données pendant le processus de conduite du véhicule. En tant que module central de la conduite autonome, la qualité de la prédiction de trajectoire est cruciale pour le contrôle de la planification en aval. La tâche de prédiction de trajectoire dispose d'une riche pile technologique et nécessite une connaissance de la perception dynamique/statique de la conduite autonome, des cartes de haute précision, des lignes de voie, des compétences en architecture de réseau neuronal (CNN&GNN&Transformer), etc. Il est très difficile de démarrer ! De nombreux fans espèrent se lancer dans la prédiction de trajectoire le plus tôt possible et éviter les pièges. Aujourd'hui, je vais faire le point sur quelques problèmes courants et des méthodes d'apprentissage introductives pour la prédiction de trajectoire ! Connaissances introductives 1. Existe-t-il un ordre d'entrée pour les épreuves de prévisualisation ? R : Regardez d’abord l’enquête, p

DualBEV : dépassant largement BEVFormer et BEVDet4D, ouvrez le livre ! DualBEV : dépassant largement BEVFormer et BEVDet4D, ouvrez le livre ! Mar 21, 2024 pm 05:21 PM

Cet article explore le problème de la détection précise d'objets sous différents angles de vue (tels que la perspective et la vue à vol d'oiseau) dans la conduite autonome, en particulier comment transformer efficacement les caractéristiques de l'espace en perspective (PV) en vue à vol d'oiseau (BEV). implémenté via le module Visual Transformation (VT). Les méthodes existantes sont globalement divisées en deux stratégies : la conversion 2D en 3D et la conversion 3D en 2D. Les méthodes 2D vers 3D améliorent les caractéristiques 2D denses en prédisant les probabilités de profondeur, mais l'incertitude inhérente aux prévisions de profondeur, en particulier dans les régions éloignées, peut introduire des inexactitudes. Alors que les méthodes 3D vers 2D utilisent généralement des requêtes 3D pour échantillonner des fonctionnalités 2D et apprendre les poids d'attention de la correspondance entre les fonctionnalités 3D et 2D via un transformateur, ce qui augmente le temps de calcul et de déploiement.

Revoir! Fusion profonde de modèles (LLM/modèle de base/apprentissage fédéré/mise au point, etc.) Revoir! Fusion profonde de modèles (LLM/modèle de base/apprentissage fédéré/mise au point, etc.) Apr 18, 2024 pm 09:43 PM

Le 23 septembre, l'article « DeepModelFusion:ASurvey » a été publié par l'Université nationale de technologie de la défense, JD.com et l'Institut de technologie de Pékin. La fusion/fusion de modèles profonds est une technologie émergente qui combine les paramètres ou les prédictions de plusieurs modèles d'apprentissage profond en un seul modèle. Il combine les capacités de différents modèles pour compenser les biais et les erreurs des modèles individuels pour de meilleures performances. La fusion profonde de modèles sur des modèles d'apprentissage profond à grande échelle (tels que le LLM et les modèles de base) est confrontée à certains défis, notamment un coût de calcul élevé, un espace de paramètres de grande dimension, l'interférence entre différents modèles hétérogènes, etc. Cet article divise les méthodes de fusion de modèles profonds existantes en quatre catégories : (1) « Connexion de modèles », qui relie les solutions dans l'espace de poids via un chemin de réduction des pertes pour obtenir une meilleure fusion de modèles initiale.

Plus qu'une simple gaussienne 3D ! Dernier aperçu des techniques de reconstruction 3D de pointe Plus qu'une simple gaussienne 3D ! Dernier aperçu des techniques de reconstruction 3D de pointe Jun 02, 2024 pm 06:57 PM

Écrit ci-dessus & La compréhension personnelle de l'auteur est que la reconstruction 3D basée sur l'image est une tâche difficile qui implique de déduire la forme 3D d'un objet ou d'une scène à partir d'un ensemble d'images d'entrée. Les méthodes basées sur l’apprentissage ont attiré l’attention pour leur capacité à estimer directement des formes 3D. Cet article de synthèse se concentre sur les techniques de reconstruction 3D de pointe, notamment la génération de nouvelles vues inédites. Un aperçu des développements récents dans les méthodes d'éclaboussure gaussienne est fourni, y compris les types d'entrée, les structures de modèle, les représentations de sortie et les stratégies de formation. Les défis non résolus et les orientations futures sont également discutés. Compte tenu des progrès rapides dans ce domaine et des nombreuses opportunités d’améliorer les méthodes de reconstruction 3D, un examen approfondi de l’algorithme semble crucial. Par conséquent, cette étude fournit un aperçu complet des progrès récents en matière de diffusion gaussienne. (Faites glisser votre pouce vers le haut

Combinaison de Golang et de technologie front-end : découvrez comment Golang joue un rôle dans le domaine front-end Combinaison de Golang et de technologie front-end : découvrez comment Golang joue un rôle dans le domaine front-end Mar 19, 2024 pm 06:15 PM

Combinaison de Golang et de la technologie front-end : pour explorer le rôle de Golang dans le domaine front-end, des exemples de code spécifiques sont nécessaires. Avec le développement rapide d'Internet et des applications mobiles, la technologie front-end est devenue de plus en plus importante. Dans ce domaine, Golang, en tant que puissant langage de programmation back-end, peut également jouer un rôle important. Cet article explorera comment Golang est combiné avec la technologie front-end et démontrera son potentiel dans le domaine front-end à travers des exemples de code spécifiques. Le rôle de Golang dans le domaine front-end est celui d'un outil efficace, concis et facile à apprendre.

Analyse de données Excel intégrée Analyse de données Excel intégrée Mar 21, 2024 am 08:21 AM

1. Dans cette leçon, nous expliquerons l'analyse intégrée des données Excel. Nous la compléterons à travers un cas. Ouvrez le support de cours et cliquez sur la cellule E2 pour saisir la formule. 2. Nous sélectionnons ensuite la cellule E53 pour calculer toutes les données suivantes. 3. Ensuite, nous cliquons sur la cellule F2, puis nous entrons la formule pour la calculer. De même, en faisant glisser vers le bas, nous pouvons calculer la valeur souhaitée. 4. Nous sélectionnons la cellule G2, cliquons sur l'onglet Données, cliquez sur Validation des données, sélectionnons et confirmons. 5. Utilisons la même méthode pour remplir automatiquement les cellules ci-dessous qui doivent être calculées. 6. Ensuite, nous calculons le salaire réel et sélectionnons la cellule H2 pour saisir la formule. 7. Ensuite, nous cliquons sur le menu déroulant des valeurs pour cliquer sur d'autres nombres.

Quels sont les sites Web d'analyse de données recommandés ? Quels sont les sites Web d'analyse de données recommandés ? Mar 13, 2024 pm 05:44 PM

Recommandé : 1. Forum d'analyse des données commerciales ; 2. Forum économique de l'Assemblée populaire nationale – Domaine de l'économétrie et des statistiques ; 4. Forum d'apprentissage et d'échange sur l'exploration de données ; . Analyse des données ; 8. Institut de recherche sur l'exploration de données ; 9. S-PLUS, R Statistics Forum.

See all articles