Exemple de régression linéaire univariée en Python
Python est un langage de programmation très populaire. Ses puissantes capacités de calcul scientifique et de traitement de données le rendent largement utilisé dans les domaines de l'analyse de données et de l'apprentissage automatique. Cet article présentera comment utiliser la régression linéaire univariée en Python pour la modélisation et la prédiction des données, et démontrera son application pratique à travers un exemple.
Tout d’abord, qu’est-ce que la régression linéaire ? En statistiques et en apprentissage automatique, la régression linéaire est une méthode utilisée pour établir une relation entre deux variables. Dans la régression linéaire univariée, nous n'avons qu'une seule variable explicative (variable indépendante) et une seule variable de réponse (variable dépendante).
Ensuite, nous présenterons comment utiliser la bibliothèque scikit-learn en Python pour implémenter la régression linéaire univariée. scikit-learn est une bibliothèque d'apprentissage automatique populaire qui contient de nombreux outils de modélisation et de visualisation de données.
Étape 1 : Importer des bibliothèques et des données
Tout d'abord, nous devons importer certaines bibliothèques. Dans cet article, nous utiliserons NumPy, Pandas, Matplotlib et Scikit-learn.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
Ensuite, nous devons préparer les données à analyser. Dans cet exemple, nous utiliserons un ensemble de données sur la taille et le prix de la maison, qui est un ensemble de données très simple.
data
df = pd.dataframe ({'zone': [1400, 1600, 1700, 1875, 1100, 1550, 2350, 2450, 1425, 1700],
'价格': [245000, 312000, 279000, 308000, 199000, 219000, 405000, 324000, 319000, 255000]})
print (df)
La sortie est comme suit :
面积 价格
0 1400 245000
1 1600 312000
2 1700 279000
3 1875 308000
4 1100 199000
5 1550 219000
6 235 0 40 5000
7 2450 324000
8 1425 319000
9 1700 255000
Étape 2 : Analyse et visualisation des données
Une fois que nous avons importé les données, nous pouvons commencer à analyser et visualiser les données. Dessinons un nuage de points où l'axe horizontal est la superficie de la maison et l'axe vertical est les ventes. prix.
plt.scatter(df['Area' ], df['price'])
plt.xlabel('area')
plt.ylabel('price')
plt.show()
Sortie :
Ce nuage de points nous indique qu'à mesure que la superficie des maisons augmente, le prix de vente augmente également. Par conséquent, il peut y avoir une relation linéaire entre ces deux variables.
Étape 3 : Ajuster le modèle de régression linéaire
Maintenant, nous pouvons commencer. en adaptant le modèle de régression linéaire dans scikit-learn. pour construire un modèle linéaire, vous devez utiliser la fonction LinearRegression()
X = df[['area']]
Y = df['price']
model = LinearRegression. ().fit(X, Y)
ici, nous attribuons la zone à la variable indépendante model.coef_)
print('Intercept:', model.intercept_)
Sortie :
Pente : [126.88610769]
Interception : 36646.35077294225
Étape 4 : Résultats de visualisation
.
y_pred = model.predict([[2000]])
plt.scatter(df['area'], df['price'] )
plt.xlabel('area')
plt.ylabel('price' )plt.show()
Sortie :
Comme on peut le voir, notre ligne de régression correspond à notre point de données, nous pouvons utiliser le modèle ajusté pour prédire le prix de vente de la superficie d'une nouvelle maison.
Cet article explique comment utiliser la bibliothèque scikit-learn en Python pour implémenter la régression linéaire univariée, y compris la préparation des données, l'analyse et la visualisation des données, l'ajustement des modèles de régression linéaire et la prévision des résultats. La régression linéaire est un outil simple mais puissant qui peut être utilisé pour étudier la relation entre deux variables et faire des prédictions. Elle a de nombreuses applications dans l'analyse des données et l'apprentissage automatique.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

CENTOS L'installation de Nginx nécessite de suivre les étapes suivantes: Installation de dépendances telles que les outils de développement, le devet PCRE et l'OpenSSL. Téléchargez le package de code source Nginx, dézippez-le et compilez-le et installez-le, et spécifiez le chemin d'installation AS / USR / LOCAL / NGINX. Créez des utilisateurs et des groupes d'utilisateurs de Nginx et définissez les autorisations. Modifiez le fichier de configuration nginx.conf et configurez le port d'écoute et le nom de domaine / adresse IP. Démarrez le service Nginx. Les erreurs communes doivent être prêtées à prêter attention, telles que les problèmes de dépendance, les conflits de port et les erreurs de fichiers de configuration. L'optimisation des performances doit être ajustée en fonction de la situation spécifique, comme l'activation du cache et l'ajustement du nombre de processus de travail.
