Maison développement back-end Tutoriel Python Exemples d'analyse factorielle principale en Python

Exemples d'analyse factorielle principale en Python

Jun 10, 2023 am 08:46 AM
python 示例 原理因子分析

Dans les domaines de l'analyse des données et de l'apprentissage automatique, l'analyse en composantes principales (ACP) est un algorithme de réduction de dimensionnalité linéaire couramment utilisé. La PCA réduit la dimensionnalité des données en trouvant les principales composantes des données, améliorant ainsi l'interprétabilité et l'efficacité de calcul des données. Cet article illustrera les principes et les applications de la PCA à travers un exemple Python.

Tout d'abord, nous devons importer des bibliothèques liées à Python, telles que numpy, matplotlib, pandas, sklearn, etc.

1

2

3

4

5

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

Copier après la connexion

Ensuite, nous chargeons les données. Ici, nous utilisons l'ensemble de données Iris, qui est un ensemble de données standard de classification et de regroupement, comprenant trois variétés d'iris. Nous utilisons la fonction read_csv() dans la bibliothèque pandas pour lire cet ensemble de données :

1

data = pd.read_csv('iris.csv')

Copier après la connexion

Maintenant, nous devons normaliser les données. Étant donné que la PCA est calculée sur la base de la matrice de covariance des données, la taille et l'ordre des tailles de la matrice de covariance sont déterminés par l'ampleur de la variation des données. Par conséquent, nous devons normaliser la plage de toutes les fonctionnalités à la même taille avant d'effectuer une analyse PCA. Nous pouvons utiliser StandardScaler de sklearn pour parvenir à la standardisation.

1

2

scaler = StandardScaler()

data_scaled = scaler.fit_transform(data)

Copier après la connexion

Ensuite, nous pouvons utiliser la méthode cov() dans numpy pour calculer la matrice de covariance des données, qui servira d'entrée à l'algorithme PCA.

1

cov_matrix = np.cov(data_scaled.T)

Copier après la connexion

Maintenant, nous pouvons utiliser la classe PCA pour trouver les principales composantes des données. Nous pouvons définir le nombre de composants principaux à conserver. Généralement, nous choisissons de conserver un nombre de composants principaux inférieur au nombre de fonctionnalités d’origine. Dans cet exemple nous garderons 2 composants principaux.

1

2

pca = PCA(n_components=2)

principal_components = pca.fit_transform(data_scaled)

Copier après la connexion

Maintenant, nous pouvons utiliser matplotlib pour tracer les résultats de la PCA. Le graphique obtenu est affiché dans un système de coordonnées bidimensionnel, où la couleur différente de chaque iris indique l'espèce à laquelle il appartient. Dans ce graphique, nous pouvons voir différents types de fleurs d’iris réparties dans différentes directions.

1

2

3

4

5

plt.figure(figsize=(8,6))

plt.scatter(principal_components[:,0], principal_components[:,1], c=data['species'])

plt.xlabel('Principal Component 1')

plt.ylabel('Principal Component 2')

plt.show()

Copier après la connexion

À travers cet exemple, nous pouvons voir le principe de fonctionnement et l'application du principe de l'analyse factorielle. La PCA est une technique très utile qui peut être utilisée dans de nombreux domaines tels que la visualisation de données, le filtrage du bruit, l'extraction de fonctionnalités et la compression de données. La PCA est donc un outil indispensable dans le domaine de l’analyse des données et de l’apprentissage automatique.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment intégrer efficacement les services Node.js ou Python sous l'architecture LAMP? Comment intégrer efficacement les services Node.js ou Python sous l'architecture LAMP? Apr 01, 2025 pm 02:48 PM

De nombreux développeurs de sites Web sont confrontés au problème de l'intégration de Node.js ou des services Python sous l'architecture de lampe: la lampe existante (Linux Apache MySQL PHP) a besoin d'un site Web ...

Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Apr 01, 2025 pm 05:09 PM

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Quelle est la raison pour laquelle les fichiers de stockage persistants de pipeline ne peuvent pas être écrits lors de l'utilisation du robot Scapy? Quelle est la raison pour laquelle les fichiers de stockage persistants de pipeline ne peuvent pas être écrits lors de l'utilisation du robot Scapy? Apr 01, 2025 pm 04:03 PM

Lorsque vous utilisez Scapy Crawler, la raison pour laquelle les fichiers de stockage persistants ne peuvent pas être écrits? Discussion Lorsque vous apprenez à utiliser Scapy Crawler pour les robots de données, vous rencontrez souvent un ...

Dessin graphique de sablier Python: comment éviter les erreurs variables non définies? Dessin graphique de sablier Python: comment éviter les erreurs variables non définies? Apr 01, 2025 pm 06:27 PM

Précision avec Python: Source de sablier Dessin graphique et vérification d'entrée Cet article résoudra le problème de définition variable rencontré par un novice Python dans le programme de dessin graphique de sablier. Code...

Quelle est la raison pour laquelle le pool de processus Python gère les demandes TCP simultanées et fait coincé le client? Quelle est la raison pour laquelle le pool de processus Python gère les demandes TCP simultanées et fait coincé le client? Apr 01, 2025 pm 04:09 PM

Python Process Pool gère les demandes TCP simultanées qui font coincé le client. Lorsque vous utilisez Python pour la programmation réseau, il est crucial de gérer efficacement les demandes TCP simultanées. ...

Comment afficher les fonctions originales encapsulées en interne par Python Functools.Partial Objet? Comment afficher les fonctions originales encapsulées en interne par Python Functools.Partial Objet? Apr 01, 2025 pm 04:15 PM

Explorez profondément la méthode de visualisation de Python Functools.Partial Objet dans Functools.Partial en utilisant Python ...

Python multiplateform de bureau de bureau de bureau: quelle bibliothèque GUI est la meilleure pour vous? Python multiplateform de bureau de bureau de bureau: quelle bibliothèque GUI est la meilleure pour vous? Apr 01, 2025 pm 05:24 PM

Choix de la bibliothèque de développement d'applications de bureau multiplateforme Python De nombreux développeurs Python souhaitent développer des applications de bureau pouvant s'exécuter sur Windows et Linux Systems ...

Google et AWS fournissent-ils des sources publiques d'image PYPI? Google et AWS fournissent-ils des sources publiques d'image PYPI? Apr 01, 2025 pm 05:15 PM

De nombreux développeurs s'appuient sur PYPI (PythonPackageIndex) ...

See all articles