


Explication détaillée de la bibliothèque d'analyse JSON en Python
Avec le développement de l'ère Internet, les données sont devenues la base de toutes les formes d'informations auxquelles nous sommes exposés, et parmi elles, le format de données JSON est souvent utilisé dans l'échange de données en réseau. Afin de faciliter l'analyse et l'utilisation de ce format de données, le langage Python fournit une bibliothèque d'analyse JSON, qui sera expliquée en détail dans cet article.
1. Introduction à JSON
JSON (JavaScript Object Notation) est un format d'échange de données léger. Comparé à XML, JSON est plus concis et plus facile à lire et à écrire, ainsi qu'à analyser et à générer. Les types de données de base de JSON incluent les chaînes, les nombres, les booléens, les valeurs nulles et deux types composites : les tableaux et les objets. Divers langages de programmation peuvent facilement générer et analyser des données JSON.
2. Module JSON en Python
Il existe un module JSON intégré à Python, qui peut facilement générer et analyser des données JSON. Ce module comprend quatre fonctions : dumps, dump,loads et load, qui sont utilisées pour convertir des objets Python en chaînes au format JSON, convertir des objets Python au format JSON et les stocker dans un fichier, et convertir des chaînes JSON en objets et lectures Python. convertit les fichiers au format JSON en objets Python.
- dumps et fonction dump
La fonction dumps convertit les objets Python en chaînes au format JSON La méthode d'utilisation est la suivante :
.import json data = {'name': 'Jack', 'age': 18, 'gender': 'male'} json_str = json.dumps(data) print(json_str)
Les résultats d'exécution sont les suivants :
{"name": "Jack", "age": 18, "gender": "male"}
dump La fonction convertit les objets Python au format JSON et les stocke dans un fichier. La méthode d'utilisation est la suivante :
import json data = {'name': 'Jack', 'age': 18, 'gender': 'male'} with open('data.json', 'w') as f: json.dump(data, f)
- charge et fonctions de chargement
import json json_str = '{"name": "Jack", "age": 18, "gender": "male"}' data = json.loads(json_str) print(data)
{'name': 'Jack', 'age': 18, 'gender': 'male'}
import json with open('data.json', 'r') as f: data = json.load(f) print(data)
Veuillez vous assurer que les données. Le fichier json se trouve dans le répertoire actuel.
3. Exemple d'utilisation
Maintenant, nous donnons un exemple pour illustrer de manière plus intuitive comment utiliser la bibliothèque d'analyse JSON en Python.
Supposons que nous ayons maintenant besoin d'obtenir des données au format JSON à partir du réseau, sa structure est la suivante :
{ "name": "Jack", "age": 18, "gender": "male", "scores": [ { "subject": "Math", "score": 90 }, { "subject": "English", "score": 85 } ] }
Nous utilisons d'abord la bibliothèque de requêtes pour obtenir les données et les analyser dans un objet Python :
import requests import json url = 'https://example.com/data.json' response = requests.get(url) data = json.loads(response.text)
Ensuite, on peut utiliser le code suivant pour obtenir chaque champ :
name = data['name'] age = data['age'] gender = data['gender'] scores = data['scores'] for score in scores: subject = score['subject'] score = score['score']
Enfin, on peut stocker les données obtenues dans un fichier local : # 🎜🎜 #
import json with open('data.txt', 'w', encoding='utf-8') as f: f.write('name: ' + name + ' ') f.write('age: ' + str(age) + ' ') f.write('gender: ' + gender + ' ') f.write('scores: ') for score in scores: f.write(' subject: ' + score['subject'] + ' ') f.write(' score: ' + str(score['score']) + ' ')
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

PHP et Python ont leurs propres avantages et inconvénients, et le choix dépend des besoins du projet et des préférences personnelles. 1.Php convient au développement rapide et à la maintenance des applications Web à grande échelle. 2. Python domine le domaine de la science des données et de l'apprentissage automatique.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Activer l'accélération du GPU Pytorch sur le système CentOS nécessite l'installation de versions CUDA, CUDNN et GPU de Pytorch. Les étapes suivantes vous guideront tout au long du processus: CUDA et CUDNN Installation détermineront la compatibilité de la version CUDA: utilisez la commande NVIDIA-SMI pour afficher la version CUDA prise en charge par votre carte graphique NVIDIA. Par exemple, votre carte graphique MX450 peut prendre en charge CUDA11.1 ou plus. Téléchargez et installez Cudatoolkit: visitez le site officiel de Nvidiacudatoolkit et téléchargez et installez la version correspondante selon la version CUDA la plus élevée prise en charge par votre carte graphique. Installez la bibliothèque CUDNN:

Docker utilise les fonctionnalités du noyau Linux pour fournir un environnement de fonctionnement d'application efficace et isolé. Son principe de travail est le suivant: 1. Le miroir est utilisé comme modèle en lecture seule, qui contient tout ce dont vous avez besoin pour exécuter l'application; 2. Le Système de fichiers Union (UnionFS) empile plusieurs systèmes de fichiers, ne stockant que les différences, l'économie d'espace et l'accélération; 3. Le démon gère les miroirs et les conteneurs, et le client les utilise pour l'interaction; 4. Les espaces de noms et les CGROUP implémentent l'isolement des conteneurs et les limitations de ressources; 5. Modes de réseau multiples prennent en charge l'interconnexion du conteneur. Ce n'est qu'en comprenant ces concepts principaux que vous pouvez mieux utiliser Docker.

Minio Object Storage: Déploiement haute performance dans le système Centos System Minio est un système de stockage d'objets distribué haute performance développé sur la base du langage Go, compatible avec Amazons3. Il prend en charge une variété de langages clients, notamment Java, Python, JavaScript et GO. Cet article introduira brièvement l'installation et la compatibilité de Minio sur les systèmes CentOS. Compatibilité de la version CentOS Minio a été vérifiée sur plusieurs versions CentOS, y compris, mais sans s'y limiter: CentOS7.9: fournit un guide d'installation complet couvrant la configuration du cluster, la préparation de l'environnement, les paramètres de fichiers de configuration, le partitionnement du disque et la mini

La formation distribuée par Pytorch sur le système CentOS nécessite les étapes suivantes: Installation de Pytorch: La prémisse est que Python et PIP sont installés dans le système CentOS. Selon votre version CUDA, obtenez la commande d'installation appropriée sur le site officiel de Pytorch. Pour la formation du processeur uniquement, vous pouvez utiliser la commande suivante: pipinstalltorchtorchVisionTorChaudio Si vous avez besoin d'une prise en charge du GPU, assurez-vous que la version correspondante de CUDA et CUDNN est installée et utilise la version Pytorch correspondante pour l'installation. Configuration de l'environnement distribué: la formation distribuée nécessite généralement plusieurs machines ou des GPU multiples uniques. Lieu

Lors de l'installation de Pytorch sur le système CentOS, vous devez sélectionner soigneusement la version appropriée et considérer les facteurs clés suivants: 1. Compatibilité de l'environnement du système: Système d'exploitation: Il est recommandé d'utiliser CentOS7 ou plus. CUDA et CUDNN: La version Pytorch et la version CUDA sont étroitement liées. Par exemple, Pytorch1.9.0 nécessite CUDA11.1, tandis que Pytorch2.0.1 nécessite CUDA11.3. La version CUDNN doit également correspondre à la version CUDA. Avant de sélectionner la version Pytorch, assurez-vous de confirmer que des versions compatibles CUDA et CUDNN ont été installées. Version Python: branche officielle de Pytorch

Dans VS Code, vous pouvez exécuter le programme dans le terminal via les étapes suivantes: Préparez le code et ouvrez le terminal intégré pour vous assurer que le répertoire de code est cohérent avec le répertoire de travail du terminal. Sélectionnez la commande Run en fonction du langage de programmation (tel que Python de Python your_file_name.py) pour vérifier s'il s'exécute avec succès et résoudre les erreurs. Utilisez le débogueur pour améliorer l'efficacité du débogage.
