Explication détaillée du modèle de régression logistique en Python

PHPz
Libérer: 2023-06-10 19:07:36
original
2652 Les gens l'ont consulté

Explication détaillée du modèle de régression logistique en Python

La régression logistique est un algorithme d'apprentissage automatique largement utilisé dans les problèmes de classification. Il peut connecter les données d'entrée et les étiquettes correspondantes pour réaliser de nouvelles prédictions de classification sur les données. . En Python, la régression logistique est un algorithme de classification couramment utilisé. Cet article présentera en détail le principe et l'utilisation du modèle de régression logistique.

Le principe de la régression logistique

La régression logistique est un algorithme de classification binaire classique, qui est généralement utilisé pour prédire à quelle catégorie appartient une donnée. Le résultat de sortie est une valeur de probabilité, qui représente la probabilité que l'échantillon appartienne à une certaine classe, généralement un nombre réel compris entre 0 et 1. L'essence de la régression logistique est un classificateur linéaire, qui prédit les données et les paramètres d'entrée via une fonction linéaire et effectue une cartographie de probabilité via une fonction sigmoïde pour générer le résultat de la classification.

La fonction d'hypothèse du modèle de régression logistique est définie comme suit :

$$h_{ heta}(x)= rac{1}{1+e^{- heta^Tx} }$$

Où, $ heta$ est le vecteur de paramètres du modèle, $x$ est le vecteur de données d'entrée. Si $h_{ heta}(x)geq0.5$, l'échantillon devrait être une classe positive, sinon l'échantillon devrait être une classe négative.

La fonction de perte du modèle de régression logistique est une fonction de perte logarithmique, qui indique dans quelle mesure le modèle s'adapte aux données d'entraînement. Elle est définie comme suit :

$$J. ( heta)=- rac {1}{m}sum_{i=1}^{m}{[y^{(i)}log{h_{ heta}(x^{(i)})}+(1 -y^{(i )})log(1-h_{ heta}(x^{(i)}))]}$$

where, $y^{(i)}$ est la valeur de l'échantillon $i$ Étiquette réelle, $x^{(i)}$ est le vecteur caractéristique de l'échantillon $i$ et $m$ est le nombre total d'échantillons.

Le processus de formation du modèle de régression logistique est le processus de résolution des paramètres du modèle $ heta $ en minimisant la fonction de perte. Les algorithmes d'optimisation couramment utilisés incluent la méthode de descente de gradient, la méthode de Newton, etc.

Implémentation d'un modèle de régression logistique en Python

En Python, nous pouvons utiliser la bibliothèque Scikit-Learn pour construire un modèle de régression logistique. Scikit-Learn est une bibliothèque d'apprentissage automatique couramment utilisée en Python. Elle fournit une multitude d'algorithmes et d'outils pour faciliter les opérations des utilisateurs telles que le prétraitement des fonctionnalités, la sélection de modèles, l'évaluation et l'optimisation.

Tout d'abord, nous devons importer des bibliothèques et des ensembles de données pertinents, tels que :

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.datasets import load_iris
 
iris = load_iris()
X = iris.data
y = iris.target
Copier après la connexion

Ensuite, nous divisons l'ensemble de données en un ensemble d'entraînement et un ensemble de test : #🎜 🎜#

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
Copier après la connexion

Ensuite, nous pouvons utiliser le modèle de régression logistique pour l'entraînement et la prédiction :

lr = LogisticRegression()
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
Copier après la connexion

Enfin, nous pouvons évaluer les performances du modèle à travers des indicateurs tels que la matrice de confusion et la précision : #🎜🎜 #
cnf_matrix = metrics.confusion_matrix(y_test, y_pred)
print(cnf_matrix)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
Copier après la connexion
# 🎜🎜#Summary

La régression logistique est un algorithme de classification couramment utilisé qui peut prédire efficacement les problèmes de classification binaire. En Python, nous pouvons utiliser la bibliothèque Scikit-Learn pour créer et entraîner des modèles de régression logistique. Mais il convient de noter que dans les applications pratiques, nous devons prétraiter et sélectionner des fonctionnalités pour améliorer les performances et la robustesse du modèle.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal
À propos de nous Clause de non-responsabilité Sitemap
Site Web PHP chinois:Formation PHP en ligne sur le bien-être public,Aidez les apprenants PHP à grandir rapidement!