Maison Opération et maintenance Sécurité Recherche sur la technologie de détection d'intrusion intranet basée sur le deep learning

Recherche sur la technologie de détection d'intrusion intranet basée sur le deep learning

Jun 11, 2023 am 10:35 AM
深度学习 内网入侵 检测技术

Alors que les attaques réseau deviennent de plus en plus complexes et secrètes, les problèmes de sécurité intranet attirent également de plus en plus l’attention. La technologie de détection d’intrusion intranet est un moyen important pour garantir la sécurité du réseau d’entreprise. La technologie traditionnelle de détection des intrusions repose principalement sur des moyens traditionnels tels que les bibliothèques de règles et les bibliothèques de signatures. Cependant, cette méthode présente des problèmes tels qu'un taux de détection manquée élevé et un taux de fausses alarmes élevé. La technologie de détection d’intrusion sur intranet basée sur l’apprentissage profond est devenue un moyen important de résoudre ces problèmes.

L'apprentissage profond est une branche émergente de l'intelligence artificielle. Il utilise le réseau neuronal du cerveau humain comme modèle et atteint des capacités de prédiction et de classification de haute précision grâce à l'apprentissage d'itérations de grandes quantités de données. L’apprentissage profond est largement utilisé dans les domaines de l’image, de la voix et dans d’autres domaines, et est de plus en plus utilisé dans le domaine de la sécurité des réseaux.

La technologie de détection d'intrusion intranet basée sur l'apprentissage profond présente les avantages suivants par rapport aux méthodes traditionnelles :

  1. Forte adaptabilité : Compte tenu de la mise à jour rapide des méthodes d'attaque réseau, les méthodes traditionnelles doivent maintenir et mettre à jour en permanence la base de règles et les bibliothèques de fonctionnalités. , et la technologie basée sur l'apprentissage profond peut ajuster les modèles de manière adaptative en apprenant de grandes quantités de données pour mieux découvrir et gérer diverses menaces de sécurité réseau.
  2. Bonne robustesse : les méthodes traditionnelles ne tolèrent pas très bien les changements des attaquants. Une fois que l'attaquant modifie ses méthodes d'attaque, les méthodes traditionnelles peuvent manquer la détection, tandis que la technologie basée sur l'apprentissage en profondeur peut apprendre les caractéristiques des données et l'attaquant. est relativement plus tolérant aux changements.
  3. Haute précision : la technologie basée sur l'apprentissage profond peut trouver le meilleur modèle grâce à un apprentissage itératif, améliorant ainsi la précision de la détection.

Dans la pratique spécifique, la technologie de détection d'intrusion intranet basée sur l'apprentissage profond est principalement divisée en plusieurs étapes telles que le prétraitement des données, l'extraction de fonctionnalités, la conversion de fonctionnalités et la prédiction de classification. Parmi eux, le prétraitement des données implique principalement des opérations telles que le nettoyage, le traitement des valeurs extrêmes et la normalisation des données pour garantir la qualité et la standardisation des données. L'extraction de caractéristiques consiste à transformer les données brutes en vecteurs de caractéristiques quantifiables qui peuvent être traités par des algorithmes d'apprentissage automatique. les vecteurs de caractéristiques contiennent généralement une grande quantité d'informations statistiques, d'informations dans le domaine fréquentiel, d'informations dans le domaine temporel, etc. ; la conversion de caractéristiques consiste à traiter les vecteurs de caractéristiques et à effectuer des opérations telles que la comparaison, le filtrage et la fusion pour faciliter la prédiction par le modèle d'apprentissage automatique ; la prédiction s'effectue via des modèles d'apprentissage automatique qui effectuent des prédictions de classification pour distinguer les données anormales des données normales.

Il est à noter que la technologie de détection d’intrusion intranet basée sur le deep learning est encore en phase de développement et fait face à de nombreux défis. Le plus grand défi est qu’il est difficile pour les algorithmes d’apprentissage profond d’atteindre de bonnes performances lorsque les données sont insuffisantes. Par conséquent, lors de l’application d’une technologie de détection d’intrusion intranet basée sur l’apprentissage profond, la qualité et la diversité des données sont très importantes.

En résumé, la technologie de détection d'intrusion intranet basée sur le deep learning est une nouvelle technologie avec un potentiel applicatif. Avec l’augmentation des différents types de méthodes d’attaque réseau, la technologie basée sur le deep learning jouera un rôle de plus en plus important dans le domaine de la sécurité intranet. Davantage de recherche et de pratique favoriseront davantage le développement et la vulgarisation de cette technologie.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Méthodes et étapes d'utilisation de BERT pour l'analyse des sentiments en Python Méthodes et étapes d'utilisation de BERT pour l'analyse des sentiments en Python Jan 22, 2024 pm 04:24 PM

BERT est un modèle de langage d'apprentissage profond pré-entraîné proposé par Google en 2018. Le nom complet est BidirectionnelEncoderRepresentationsfromTransformers, qui est basé sur l'architecture Transformer et présente les caractéristiques d'un codage bidirectionnel. Par rapport aux modèles de codage unidirectionnels traditionnels, BERT peut prendre en compte les informations contextuelles en même temps lors du traitement du texte, de sorte qu'il fonctionne bien dans les tâches de traitement du langage naturel. Sa bidirectionnalité permet à BERT de mieux comprendre les relations sémantiques dans les phrases, améliorant ainsi la capacité expressive du modèle. Grâce à des méthodes de pré-formation et de réglage fin, BERT peut être utilisé pour diverses tâches de traitement du langage naturel, telles que l'analyse des sentiments, la dénomination

Analyse des fonctions d'activation de l'IA couramment utilisées : pratique d'apprentissage en profondeur de Sigmoid, Tanh, ReLU et Softmax Analyse des fonctions d'activation de l'IA couramment utilisées : pratique d'apprentissage en profondeur de Sigmoid, Tanh, ReLU et Softmax Dec 28, 2023 pm 11:35 PM

Les fonctions d'activation jouent un rôle crucial dans l'apprentissage profond. Elles peuvent introduire des caractéristiques non linéaires dans les réseaux neuronaux, permettant ainsi au réseau de mieux apprendre et simuler des relations entrées-sorties complexes. La sélection et l'utilisation correctes des fonctions d'activation ont un impact important sur les performances et les résultats de formation des réseaux de neurones. Cet article présentera quatre fonctions d'activation couramment utilisées : Sigmoid, Tanh, ReLU et Softmax, à partir de l'introduction, des scénarios d'utilisation, des avantages, Les inconvénients et les solutions d'optimisation sont abordés pour vous fournir une compréhension complète des fonctions d'activation. 1. Fonction sigmoïde Introduction à la formule de la fonction SIgmoïde : La fonction sigmoïde est une fonction non linéaire couramment utilisée qui peut mapper n'importe quel nombre réel entre 0 et 1. Il est généralement utilisé pour unifier le

Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées May 30, 2024 am 09:35 AM

Écrit précédemment, nous discutons aujourd'hui de la manière dont la technologie d'apprentissage profond peut améliorer les performances du SLAM (localisation et cartographie simultanées) basé sur la vision dans des environnements complexes. En combinant des méthodes d'extraction de caractéristiques approfondies et de correspondance de profondeur, nous introduisons ici un système SLAM visuel hybride polyvalent conçu pour améliorer l'adaptation dans des scénarios difficiles tels que des conditions de faible luminosité, un éclairage dynamique, des zones faiblement texturées et une gigue importante. Notre système prend en charge plusieurs modes, notamment les configurations étendues monoculaire, stéréo, monoculaire-inertielle et stéréo-inertielle. En outre, il analyse également comment combiner le SLAM visuel avec des méthodes d’apprentissage profond pour inspirer d’autres recherches. Grâce à des expériences approfondies sur des ensembles de données publiques et des données auto-échantillonnées, nous démontrons la supériorité du SL-SLAM en termes de précision de positionnement et de robustesse du suivi.

Intégration d'espace latent : explication et démonstration Intégration d'espace latent : explication et démonstration Jan 22, 2024 pm 05:30 PM

L'intégration d'espace latent (LatentSpaceEmbedding) est le processus de mappage de données de grande dimension vers un espace de faible dimension. Dans le domaine de l'apprentissage automatique et de l'apprentissage profond, l'intégration d'espace latent est généralement un modèle de réseau neuronal qui mappe les données d'entrée de grande dimension dans un ensemble de représentations vectorielles de basse dimension. Cet ensemble de vecteurs est souvent appelé « vecteurs latents » ou « latents ». encodages". Le but de l’intégration de l’espace latent est de capturer les caractéristiques importantes des données et de les représenter sous une forme plus concise et compréhensible. Grâce à l'intégration de l'espace latent, nous pouvons effectuer des opérations telles que la visualisation, la classification et le regroupement de données dans un espace de faible dimension pour mieux comprendre et utiliser les données. L'intégration d'espace latent a de nombreuses applications dans de nombreux domaines, tels que la génération d'images, l'extraction de caractéristiques, la réduction de dimensionnalité, etc. L'intégration de l'espace latent est le principal

Comprendre en un seul article : les liens et les différences entre l'IA, le machine learning et le deep learning Comprendre en un seul article : les liens et les différences entre l'IA, le machine learning et le deep learning Mar 02, 2024 am 11:19 AM

Dans la vague actuelle de changements technologiques rapides, l'intelligence artificielle (IA), l'apprentissage automatique (ML) et l'apprentissage profond (DL) sont comme des étoiles brillantes, à la tête de la nouvelle vague des technologies de l'information. Ces trois mots apparaissent fréquemment dans diverses discussions de pointe et applications pratiques, mais pour de nombreux explorateurs novices dans ce domaine, leurs significations spécifiques et leurs connexions internes peuvent encore être entourées de mystère. Alors regardons d'abord cette photo. On constate qu’il existe une corrélation étroite et une relation progressive entre l’apprentissage profond, l’apprentissage automatique et l’intelligence artificielle. Le deep learning est un domaine spécifique du machine learning, et le machine learning

Super fort! Top 10 des algorithmes de deep learning ! Super fort! Top 10 des algorithmes de deep learning ! Mar 15, 2024 pm 03:46 PM

Près de 20 ans se sont écoulés depuis que le concept d'apprentissage profond a été proposé en 2006. L'apprentissage profond, en tant que révolution dans le domaine de l'intelligence artificielle, a donné naissance à de nombreux algorithmes influents. Alors, selon vous, quels sont les 10 meilleurs algorithmes pour l’apprentissage profond ? Voici les meilleurs algorithmes d’apprentissage profond, à mon avis. Ils occupent tous une position importante en termes d’innovation, de valeur d’application et d’influence. 1. Contexte du réseau neuronal profond (DNN) : Le réseau neuronal profond (DNN), également appelé perceptron multicouche, est l'algorithme d'apprentissage profond le plus courant lorsqu'il a été inventé pour la première fois, jusqu'à récemment en raison du goulot d'étranglement de la puissance de calcul. années, puissance de calcul, La percée est venue avec l'explosion des données. DNN est un modèle de réseau neuronal qui contient plusieurs couches cachées. Dans ce modèle, chaque couche transmet l'entrée à la couche suivante et

Comment utiliser les modèles hybrides CNN et Transformer pour améliorer les performances Comment utiliser les modèles hybrides CNN et Transformer pour améliorer les performances Jan 24, 2024 am 10:33 AM

Convolutional Neural Network (CNN) et Transformer sont deux modèles d'apprentissage en profondeur différents qui ont montré d'excellentes performances sur différentes tâches. CNN est principalement utilisé pour les tâches de vision par ordinateur telles que la classification d'images, la détection de cibles et la segmentation d'images. Il extrait les caractéristiques locales de l'image via des opérations de convolution et effectue une réduction de dimensionnalité des caractéristiques et une invariance spatiale via des opérations de pooling. En revanche, Transformer est principalement utilisé pour les tâches de traitement du langage naturel (NLP) telles que la traduction automatique, la classification de texte et la reconnaissance vocale. Il utilise un mécanisme d'auto-attention pour modéliser les dépendances dans des séquences, évitant ainsi le calcul séquentiel dans les réseaux neuronaux récurrents traditionnels. Bien que ces deux modèles soient utilisés pour des tâches différentes, ils présentent des similitudes dans la modélisation des séquences.

Algorithme RMSprop amélioré Algorithme RMSprop amélioré Jan 22, 2024 pm 05:18 PM

RMSprop est un optimiseur largement utilisé pour mettre à jour les poids des réseaux de neurones. Il a été proposé par Geoffrey Hinton et al. en 2012 et est le prédécesseur de l'optimiseur Adam. L'émergence de l'optimiseur RMSprop vise principalement à résoudre certains problèmes rencontrés dans l'algorithme de descente de gradient SGD, tels que la disparition de gradient et l'explosion de gradient. En utilisant l'optimiseur RMSprop, le taux d'apprentissage peut être ajusté efficacement et les pondérations mises à jour de manière adaptative, améliorant ainsi l'effet de formation du modèle d'apprentissage en profondeur. L'idée principale de l'optimiseur RMSprop est d'effectuer une moyenne pondérée des gradients afin que les gradients à différents pas de temps aient des effets différents sur les mises à jour de poids. Plus précisément, RMSprop calcule le carré de chaque paramètre

See all articles