Un guide du débutant sur l'apprentissage profond en PHP
Ces dernières années, le développement rapide de la technologie du deep learning a eu un impact énorme sur de nombreux domaines. En tant que langage de programmation populaire, PHP s’intègre également progressivement au deep learning. Dans cet article, nous fournirons aux débutants un guide d'introduction simple au deep learning en PHP pour les aider à comprendre comment le deep learning est implémenté en PHP et à en bénéficier.
Tout d’abord, nous devons comprendre ce qu’est l’apprentissage profond. Dans le domaine de l’intelligence artificielle, le deep learning est une technologie d’apprentissage automatique qui vise à permettre aux ordinateurs d’apprendre et d’effectuer des tâches par eux-mêmes, plutôt que d’être programmés par des humains. L'apprentissage profond représente les efforts humains pour simuler la pensée et le comportement humains.
Pour implémenter le deep learning en PHP, nous avons besoin d'outils et de bibliothèques importants. Voici quelques outils et bibliothèques remarquables :
- TensorFlow : il s'agit d'une bibliothèque d'apprentissage en profondeur très populaire qui prend en charge les langages de programmation Python et C++. Elle est riche en documentation détaillée et en exemples d'application, et est très conviviale pour les apprenants qui viennent tout juste d'apprendre. commencé.
- Keras : Keras est une bibliothèque d'apprentissage profond de haut niveau qui est une interface avec TensorFlow et fournit une API plus facile à comprendre.
- Theano : Theano est une bibliothèque permettant de définir, d'optimiser et d'évaluer des expressions mathématiques, souvent utilisées en calcul haute performance.
Pour les développeurs PHP, Keras est un bon choix. Nous pouvons utiliser Keras pour créer des modèles d'apprentissage en profondeur.
Ensuite, nous montrerons comment utiliser Keras pour l'apprentissage profond en PHP.
Tout d'abord, nous devons installer Keras dans l'environnement PHP. Nous pouvons utiliser Composer pour installer la bibliothèque Keras de PHP depuis Packagist. Dans la ligne de commande, saisissez la commande suivante :
composer require php-ai/php-ml
Une fois l'installation terminée, nous pouvons commencer à construire le modèle de deep learning.
Ici, nous utiliserons un exemple pour démontrer le processus de construction d'un modèle d'apprentissage profond. Nous souhaitons former un modèle de reconnaissance numérique.
Tout d'abord, nous devons préparer les données d'entraînement. Nous pouvons utiliser l'ensemble de données MNIST, qui est un ensemble de données numériques très populaire et déjà inclus dans Keras.
use PhpmlDatasetMnistDataset; $dataset = new MnistDataset(); $dataset->load();
Ensuite, nous devons diviser les données en données d'entraînement et données de test.
use PhpmlCrossValidationStratifiedRandomSplit; $sampler = new StratifiedRandomSplit($dataset->getSamples(), $dataset->getTargets(), 0.5);
Dans cet exemple, nous avons utilisé StratifiedRandomSplit, qui est une méthode de fractionnement de données dans la bibliothèque Phpml.
Ensuite, nous allons construire un modèle d'apprentissage profond à l'aide de Keras. Nous utiliserons le modèle séquentiel, qui est un modèle simple d'apprentissage en profondeur.
use PhpmlNeuralNetworkLayerDense; use PhpmlNeuralNetworkLayerFlatten; use PhpmlNeuralNetworkLayerActivation; use PhpmlNeuralNetworkLayerDropout; use PhpmlNeuralNetworkClassifierKeras; use PhpmlNeuralNetworkOptimizerAdam; use PhpmlNeuralNetworkActivationFunctionSigmoid; $model = new Sequential(); $model->add(new Flatten()); $model->add(new Dense(800, new Sigmoid())); $model->add(new Dropout(0.2)); $model->add(new Dense(10, new Sigmoid())); $model->add(new Activation('softmax')); $optimizer = new Adam(); $model->compile($optimizer, 'categorical_crossentropy', ['accuracy']);
Ici, nous avons créé un modèle séquentiel et ajouté quelques couches. Plus précisément, nous avons ajouté une couche Flatten, une couche dense de 800 nœuds, une couche Dropout à 20 %, une couche dense de 10 nœuds et une couche d'activation avec activation Softmax.
Ensuite, nous devons adapter le modèle aux données d'entraînement.
$keras = new Keras([ 'input_shape' => [1, 28, 28], 'output_shape' => [10], 'loss' => 'categorical_crossentropy', 'metrics' => ['accuracy'], 'epochs' => 3, 'batch_size' => 128, ]); $keras->fit($sampler->getTrainSamples(), $sampler->getTrainLabels());
Ici, nous instancions l'objet Keras et l'entraînons pendant 3 époques avec une taille de lot de 128.
Enfin, nous pouvons utiliser l'ensemble de données de test pour évaluer notre modèle.
$score = $keras->score($sampler->getTestSamples(), $sampler->getTestLabels()); echo 'Test Accuracy: ' . $score['accuracy'] . PHP_EOL;
Ici, nous utilisons la méthode de score fournie dans Keras pour évaluer l'exactitude de l'ensemble de données de test.
Ceci est un guide d'introduction simple à l'apprentissage profond en PHP. Nous avons maintenant vu comment créer un modèle d'apprentissage profond en PHP à l'aide de Keras, ainsi que comment entraîner et évaluer le modèle. Grâce à cet exemple, nous espérons aider les débutants à mieux comprendre et appliquer la technologie d'apprentissage profond.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds





PHP 8.4 apporte plusieurs nouvelles fonctionnalités, améliorations de sécurité et de performances avec une bonne quantité de dépréciations et de suppressions de fonctionnalités. Ce guide explique comment installer PHP 8.4 ou mettre à niveau vers PHP 8.4 sur Ubuntu, Debian ou leurs dérivés. Bien qu'il soit possible de compiler PHP à partir des sources, son installation à partir d'un référentiel APT comme expliqué ci-dessous est souvent plus rapide et plus sécurisée car ces référentiels fourniront les dernières corrections de bogues et mises à jour de sécurité à l'avenir.

Si vous êtes un développeur PHP expérimenté, vous aurez peut-être le sentiment d'y être déjà allé et de l'avoir déjà fait. Vous avez développé un nombre important d'applications, débogué des millions de lignes de code et peaufiné de nombreux scripts pour réaliser des opérations.

Visual Studio Code, également connu sous le nom de VS Code, est un éditeur de code source gratuit – ou environnement de développement intégré (IDE) – disponible pour tous les principaux systèmes d'exploitation. Avec une large collection d'extensions pour de nombreux langages de programmation, VS Code peut être c

JWT est une norme ouverte basée sur JSON, utilisée pour transmettre en toute sécurité des informations entre les parties, principalement pour l'authentification de l'identité et l'échange d'informations. 1. JWT se compose de trois parties: en-tête, charge utile et signature. 2. Le principe de travail de JWT comprend trois étapes: la génération de JWT, la vérification de la charge utile JWT et l'analyse. 3. Lorsque vous utilisez JWT pour l'authentification en PHP, JWT peut être généré et vérifié, et les informations sur le rôle et l'autorisation des utilisateurs peuvent être incluses dans l'utilisation avancée. 4. Les erreurs courantes incluent une défaillance de vérification de signature, l'expiration des jetons et la charge utile surdimensionnée. Les compétences de débogage incluent l'utilisation des outils de débogage et de l'exploitation forestière. 5. L'optimisation des performances et les meilleures pratiques incluent l'utilisation des algorithmes de signature appropriés, la définition des périodes de validité raisonnablement,

Ce tutoriel montre comment traiter efficacement les documents XML à l'aide de PHP. XML (Language de balisage extensible) est un langage de balisage basé sur le texte polyvalent conçu à la fois pour la lisibilité humaine et l'analyse de la machine. Il est couramment utilisé pour le stockage de données et

Une chaîne est une séquence de caractères, y compris des lettres, des nombres et des symboles. Ce tutoriel apprendra à calculer le nombre de voyelles dans une chaîne donnée en PHP en utilisant différentes méthodes. Les voyelles en anglais sont a, e, i, o, u, et elles peuvent être en majuscules ou en minuscules. Qu'est-ce qu'une voyelle? Les voyelles sont des caractères alphabétiques qui représentent une prononciation spécifique. Il y a cinq voyelles en anglais, y compris les majuscules et les minuscules: a, e, i, o, u Exemple 1 Entrée: String = "TutorialSpoint" Sortie: 6 expliquer Les voyelles dans la chaîne "TutorialSpoint" sont u, o, i, a, o, i. Il y a 6 yuans au total

Liaison statique (statique: :) implémente la liaison statique tardive (LSB) dans PHP, permettant à des classes d'appel d'être référencées dans des contextes statiques plutôt que de définir des classes. 1) Le processus d'analyse est effectué au moment de l'exécution, 2) Recherchez la classe d'appel dans la relation de succession, 3) il peut apporter des frais généraux de performance.

Quelles sont les méthodes magiques de PHP? Les méthodes magiques de PHP incluent: 1. \ _ \ _ Construct, utilisé pour initialiser les objets; 2. \ _ \ _ Destruct, utilisé pour nettoyer les ressources; 3. \ _ \ _ Appel, gérer les appels de méthode inexistants; 4. \ _ \ _ GET, Implémentez l'accès à l'attribut dynamique; 5. \ _ \ _ SET, Implémentez les paramètres d'attribut dynamique. Ces méthodes sont automatiquement appelées dans certaines situations, améliorant la flexibilité et l'efficacité du code.
