Exemples SVM en Python

Jun 11, 2023 pm 08:42 PM
python 实例 svm

Support Vector Machine (SVM) en Python est un puissant algorithme d'apprentissage supervisé qui peut être utilisé pour résoudre des problèmes de classification et de régression. SVM fonctionne bien lorsqu'il s'agit de données de grande dimension et de problèmes non linéaires, et est largement utilisé dans l'exploration de données, la classification d'images, la classification de textes, la bioinformatique et d'autres domaines.

Dans cet article, nous présenterons un exemple d'utilisation de SVM pour la classification en Python. Nous utiliserons le modèle SVM de la bibliothèque scikit-learn, qui fournit de nombreux algorithmes d'apprentissage automatique puissants.

Tout d'abord, nous devons installer la bibliothèque scikit-learn, qui peut être installée à l'aide de la commande suivante dans le terminal :

pip install scikit-learn
Copier après la connexion

Ensuite, nous utiliserons l'ensemble de données classique Iris pour démontrer l'effet de classification de SVM. L'ensemble de données Iris contient 150 échantillons, répartis en trois catégories, chaque catégorie contenant 50 échantillons. Chaque échantillon présente 4 caractéristiques : longueur des sépales, largeur des sépales, longueur des pétales et largeur des pétales. Nous utiliserons SVM pour classer ces échantillons.

Tout d'abord, nous devons importer les bibliothèques requises :

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
Copier après la connexion

Ensuite, nous chargeons l'ensemble de données Iris :

iris = datasets.load_iris()
Copier après la connexion

Ensuite, nous divisons les données en ensemble d'entraînement et en ensemble de test :

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=0)
Copier après la connexion

Ici, nous utilisons la fonction train_test_split , L'ensemble de données est divisé de manière aléatoire en un ensemble d'apprentissage et un ensemble de test, où le paramètre test_size spécifie que l'ensemble de test représente 30 % de l'ensemble de données total.

Ensuite, nous utiliserons le modèle SVM pour ajuster l'ensemble d'entraînement :

clf = svm.SVC(kernel='linear', C=1)
clf.fit(X_train, y_train)
Copier après la connexion

Ici, nous utilisons la fonction noyau linéaire et spécifions un paramètre de régularisation C=1. L'hyperparamètre C de SVM contrôle le compromis entre précision et complexité du modèle. Plus la valeur C est petite, plus le modèle est simple et est sujet au sous-ajustement ; plus la valeur C est grande, plus le modèle est complexe et est sujet au sur-ajustement. Habituellement, nous devons choisir une valeur C appropriée par validation croisée.

Ensuite, nous utilisons le modèle entraîné pour prédire l'ensemble de test :

y_pred = clf.predict(X_test)
Copier après la connexion

Enfin, nous pouvons utiliser la fonction precision_score pour calculer la précision de la classification :

accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
Copier après la connexion

Le code complet est le suivant :

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score

# Load iris dataset
iris = datasets.load_iris()

# Split data into train and test
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=0)

# Fit SVM model on training data
clf = svm.SVC(kernel='linear', C=1)
clf.fit(X_train, y_train)

# Predict on test data
y_pred = clf.predict(X_test)

# Compute accuracy score
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
Copier après la connexion

Dans ce cas, nous a utilisé le modèle SVM pour la classification, en ciblant un ensemble de données très courant, l'ensemble de données Iris. L’avantage de SVM réside dans sa puissante capacité de classification et son adéquation aux données de grande dimension et aux problèmes non linéaires. La mise en œuvre de SVM nécessite le réglage d'une série d'hyperparamètres pour obtenir le meilleur effet de classification.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le plan Python de 2 heures: une approche réaliste Le plan Python de 2 heures: une approche réaliste Apr 11, 2025 am 12:04 AM

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python: Explorer ses applications principales Python: Explorer ses applications principales Apr 10, 2025 am 09:41 AM

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Méthode de Navicat pour afficher le mot de passe de la base de données MongoDB Méthode de Navicat pour afficher le mot de passe de la base de données MongoDB Apr 08, 2025 pm 09:39 PM

Il est impossible de visualiser le mot de passe MongoDB directement via NAVICAT car il est stocké sous forme de valeurs de hachage. Comment récupérer les mots de passe perdus: 1. Réinitialiser les mots de passe; 2. Vérifiez les fichiers de configuration (peut contenir des valeurs de hachage); 3. Vérifiez les codes (May Code Hardcode).

Comment utiliser Aws Glue Crawler avec Amazon Athena Comment utiliser Aws Glue Crawler avec Amazon Athena Apr 09, 2025 pm 03:09 PM

En tant que professionnel des données, vous devez traiter de grandes quantités de données provenant de diverses sources. Cela peut poser des défis à la gestion et à l'analyse des données. Heureusement, deux services AWS peuvent aider: AWS Glue et Amazon Athena.

Comment démarrer le serveur avec redis Comment démarrer le serveur avec redis Apr 10, 2025 pm 08:12 PM

Les étapes pour démarrer un serveur Redis incluent: Installez Redis en fonction du système d'exploitation. Démarrez le service Redis via Redis-Server (Linux / MacOS) ou Redis-Server.exe (Windows). Utilisez la commande redis-Cli Ping (Linux / MacOS) ou redis-Cli.exe Ping (Windows) pour vérifier l'état du service. Utilisez un client redis, tel que redis-cli, python ou node.js pour accéder au serveur.

Comment lire la file d'attente redis Comment lire la file d'attente redis Apr 10, 2025 pm 10:12 PM

Pour lire une file d'attente à partir de Redis, vous devez obtenir le nom de la file d'attente, lire les éléments à l'aide de la commande LPOP et traiter la file d'attente vide. Les étapes spécifiques sont les suivantes: Obtenez le nom de la file d'attente: Nommez-le avec le préfixe de "Fitre:" tel que "Fitre: My-Quyue". Utilisez la commande LPOP: éjectez l'élément de la tête de la file d'attente et renvoyez sa valeur, telle que la file d'attente LPOP: My-Queue. Traitement des files d'attente vides: si la file d'attente est vide, LPOP renvoie NIL et vous pouvez vérifier si la file d'attente existe avant de lire l'élément.

Comment afficher la version serveur de redis Comment afficher la version serveur de redis Apr 10, 2025 pm 01:27 PM

Question: Comment afficher la version Redis Server? Utilisez l'outil de ligne de commande redis-Cli --version pour afficher la version du serveur connecté. Utilisez la commande Info Server pour afficher la version interne du serveur et devez analyser et retourner des informations. Dans un environnement de cluster, vérifiez la cohérence de la version de chaque nœud et peut être vérifiée automatiquement à l'aide de scripts. Utilisez des scripts pour automatiser les versions de visualisation, telles que la connexion avec les scripts Python et les informations d'impression.

Dans quelle mesure le mot de passe de Navicat est-il sécurisé? Dans quelle mesure le mot de passe de Navicat est-il sécurisé? Apr 08, 2025 pm 09:24 PM

La sécurité du mot de passe de Navicat repose sur la combinaison de cryptage symétrique, de force de mot de passe et de mesures de sécurité. Des mesures spécifiques incluent: l'utilisation de connexions SSL (à condition que le serveur de base de données prenne en charge et configure correctement le certificat), à la mise à jour régulièrement de NAVICAT, en utilisant des méthodes plus sécurisées (telles que les tunnels SSH), en restreignant les droits d'accès et, surtout, à ne jamais enregistrer de mots de passe.

See all articles