


Explication détaillée de l'implémentation de l'arbre binaire Java et des cas d'application spécifiques
Explication détaillée de l'implémentation de l'arbre binaire Java et des cas d'application spécifiques
L'arbre binaire est une structure de données souvent utilisée en informatique, qui peut effectuer des opérations de recherche et de tri très efficaces. Dans cet article, nous verrons comment implémenter un arbre binaire en Java et certains de ses cas d'application spécifiques.
Définition de l'arbre binaire
L'arbre binaire est une structure de données très importante, composée du nœud racine (le nœud supérieur de l'arbre) et de plusieurs sous-arbres gauche et sous-arbres droits. Chaque nœud a au plus deux nœuds enfants, le nœud enfant de gauche est appelé sous-arbre gauche et le nœud enfant de droite est appelé sous-arbre droit. Si un nœud n’a aucun nœud enfant, il est appelé nœud feuille ou nœud terminal.
Implémentation d'un arbre binaire en Java
La classe Node peut être utilisée en Java pour représenter les nœuds d'un arbre binaire. Cette classe contient une valeur de type int et deux références de type Node à gauche et à droite. , représentant respectivement le nœud enfant gauche et le nœud enfant droit. Voici un exemple de code :
class TreeNode { int val; TreeNode left; TreeNode right; TreeNode(int x) { val = x; } }
Opérations de base pour implémenter un arbre binaire
- Création d'un arbre binaire
public class TreeBuilder { public TreeNode buildTree(int[] array) { if (array == null || array.length == 0) { return null; } return build(array, 0, array.length - 1); } private TreeNode build(int[] array, int start, int end) { if (start > end) { return null; } int mid = (start + end) / 2; TreeNode root = new TreeNode(array[mid]); root.left = build(array, start, mid - 1); root.right = build(array, mid + 1, end); return root; } }
- Find node
public class TreeSearch { public TreeNode search(TreeNode root, int target) { if (root == null || root.val == target) { return root; } if (root.val > target) { return search(root.left, target); } else { return search(root.right, target); } } }
- Insérer un nœud
public class TreeInsert { public TreeNode insert(TreeNode root, int target) { if (root == null) { return new TreeNode(target); } if (root.val > target) { root.left = insert(root.left, target); } else if (root.val < target) { root.right = insert(root.right, target); } return root; } }
- Delete node
- A est un nœud feuille et peut être supprimé directement. A n'a qu'un seul nœud enfant, il suffit de remplacer le nœud enfant par sa position. A a deux nœuds enfants. Nous devons trouver le plus petit nœud B dans son sous-arbre droit, remplacer A par la valeur de B, puis supprimer B.
public class TreeDelete { public TreeNode delete(TreeNode root, int target) { if (root == null) { return null; } if (root.val > target) { root.left = delete(root.left, target); } else if (root.val < target) { root.right = delete(root.right, target); } else { if (root.left == null && root.right == null) { return null; } else if (root.left == null) { return root.right; } else if (root.right == null) { return root.left; } else { TreeNode min = findMin(root.right); root.val = min.val; root.right = delete(root.right, min.val); } } return root; } private TreeNode findMin(TreeNode node) { while (node.left != null) { node = node.left; } return node; } }
- Trouver le kième élément
public class TreeFindKth { private int cnt = 0; public int kthSmallest(TreeNode root, int k) { if (root == null) { return Integer.MAX_VALUE; } int left = kthSmallest(root.left, k); if (left != Integer.MAX_VALUE) { return left; } cnt++; if (cnt == k) { return root.val; } return kthSmallest(root.right, k); } }
- Trouver les plus petits k éléments
public class TreeFindMinK { public List<Integer> kSmallest(TreeNode root, int k) { List<Integer> result = new ArrayList<>(); Stack<TreeNode> stack = new Stack<>(); TreeNode current = root; while (current != null || !stack.isEmpty()) { while (current != null) { stack.push(current); current = current.left; } current = stack.pop(); result.add(current.val); if (result.size() == k) { return result; } current = current.right; } return result; } }
- Trouver la profondeur d'un arbre binaire
public class TreeDepth { public int maxDepth(TreeNode root) { if (root == null) { return 0; } return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1; } }
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Guide du nombre parfait en Java. Nous discutons ici de la définition, comment vérifier le nombre parfait en Java ?, des exemples d'implémentation de code.

Guide du générateur de nombres aléatoires en Java. Nous discutons ici des fonctions en Java avec des exemples et de deux générateurs différents avec d'autres exemples.

Guide de Weka en Java. Nous discutons ici de l'introduction, de la façon d'utiliser Weka Java, du type de plate-forme et des avantages avec des exemples.

Guide du nombre de Smith en Java. Nous discutons ici de la définition, comment vérifier le numéro Smith en Java ? exemple avec implémentation de code.

Dans cet article, nous avons conservé les questions d'entretien Java Spring les plus posées avec leurs réponses détaillées. Pour que vous puissiez réussir l'interview.

Java 8 présente l'API Stream, fournissant un moyen puissant et expressif de traiter les collections de données. Cependant, une question courante lors de l'utilisation du flux est: comment se casser ou revenir d'une opération FOREAK? Les boucles traditionnelles permettent une interruption ou un retour précoce, mais la méthode Foreach de Stream ne prend pas directement en charge cette méthode. Cet article expliquera les raisons et explorera des méthodes alternatives pour la mise en œuvre de terminaison prématurée dans les systèmes de traitement de flux. Lire plus approfondie: Améliorations de l'API Java Stream Comprendre le flux Forach La méthode foreach est une opération terminale qui effectue une opération sur chaque élément du flux. Son intention de conception est

Guide de TimeStamp to Date en Java. Ici, nous discutons également de l'introduction et de la façon de convertir l'horodatage en date en Java avec des exemples.

Les capsules sont des figures géométriques tridimensionnelles, composées d'un cylindre et d'un hémisphère aux deux extrémités. Le volume de la capsule peut être calculé en ajoutant le volume du cylindre et le volume de l'hémisphère aux deux extrémités. Ce tutoriel discutera de la façon de calculer le volume d'une capsule donnée en Java en utilisant différentes méthodes. Formule de volume de capsule La formule du volume de la capsule est la suivante: Volume de capsule = volume cylindrique volume de deux hémisphères volume dans, R: Le rayon de l'hémisphère. H: La hauteur du cylindre (à l'exclusion de l'hémisphère). Exemple 1 entrer Rayon = 5 unités Hauteur = 10 unités Sortir Volume = 1570,8 unités cubes expliquer Calculer le volume à l'aide de la formule: Volume = π × r2 × h (4
