Maison développement back-end Tutoriel Python Programmation serveur Python : apprentissage profond avec PyTorch

Programmation serveur Python : apprentissage profond avec PyTorch

Jun 18, 2023 am 10:30 AM
深度学习 pytorch 服务器编程

Avec le développement rapide de la technologie de l'intelligence artificielle, la technologie du deep learning est devenue un outil essentiel dans de nombreux domaines d'application. En tant que framework d'apprentissage profond populaire, PyTorch est devenu le premier choix de nombreux chercheurs et ingénieurs. Cet article explique comment utiliser PyTorch pour l'apprentissage en profondeur dans la programmation serveur Python.

  1. Introduction à PyTorch

PyTorch est un framework d'apprentissage en profondeur Python open source qui fournit des concepts et des outils de conception flexibles pour aider les chercheurs et les ingénieurs à créer et former rapidement divers réseaux de neurones profonds. L'idée principale de PyTorch est « l'exécution instantanée », qui permet aux utilisateurs de vérifier et de modifier les modèles de réseau en temps réel pour obtenir de meilleurs résultats de formation.

Les principaux avantages de l'utilisation de PyTorch incluent :

  • Facile à utiliser : PyTorch fournit une API et une documentation intuitives, permettant aux débutants de commencer facilement à l'utiliser.
  • Flexibilité : PyTorch fournit une variété de concepts et d'outils de conception flexibles, permettant aux utilisateurs de concevoir et d'expérimenter librement différentes structures de réseau.
  • Facile à personnaliser : PyTorch permet aux utilisateurs d'utiliser la puissance de Python pour personnaliser les couches réseau et les processus de formation afin d'obtenir des fonctions d'apprentissage en profondeur plus avancées.
  1. Bases de la programmation serveur

L'utilisation de PyTorch pour l'apprentissage en profondeur dans la programmation serveur nécessite des connaissances de base en programmation serveur. Les bases de la programmation serveur ne seront pas présentées en détail ici, mais nous devons prêter attention aux aspects suivants :

  • Stockage de données : les serveurs ont généralement besoin de lire et d'écrire de grandes quantités de données, ils doivent donc utiliser un stockage de données efficace. méthodes, telles que les bases de données, le système de fichiers, etc.
  • Communication réseau : les serveurs doivent généralement gérer diverses requêtes réseau, telles que les requêtes HTTP, les requêtes WebSocket, etc.
  • Multi-threading et multi-processus : Afin d'améliorer les performances et la stabilité du serveur, il est généralement nécessaire d'utiliser le multi-threading ou le multi-processus pour gérer les requêtes.
  • Sécurité : Le serveur doit protéger la sécurité des données et des systèmes, notamment les pare-feu, le cryptage, l'authentification, l'autorisation, etc.
  1. Application de PyTorch dans la programmation serveur

L'application de PyTorch dans la programmation serveur comprend généralement les aspects suivants :

  • Formation de modèles : le serveur peut utiliser PyTorch pour la formation de modèles dans un environnement multi-GPU, accélérant ainsi la formation. accélérer et améliorer les performances du modèle.
  • Inférence de modèle : les serveurs peuvent utiliser PyTorch pour l'inférence de modèle, fournissant des réponses en temps réel aux demandes des clients.
  • Gestion des modèles : le serveur peut utiliser PyTorch pour gérer plusieurs modèles, permettant aux utilisateurs de changer et de déployer rapidement différents modèles.
  • Prise en charge multilingue : PyTorch peut être intégré à d'autres langages de programmation, tels que Java, C++, etc., pour s'intégrer à différents scénarios d'application.
  1. Exemple : entraîner et déployer un modèle à l'aide de PyTorch

Voici un exemple simple montrant comment entraîner et déployer un modèle à l'aide de PyTorch.

Tout d'abord, nous devons télécharger et préparer l'ensemble de données d'entraînement. Ici, nous utilisons l'ensemble de données de reconnaissance de chiffres manuscrits MNIST. Ensuite, nous devons définir un réseau neuronal convolutif pour la formation et l'inférence.

import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
Copier après la connexion

Ensuite, nous devons définir une fonction d'entraînement pour entraîner le réseau neuronal convolutionnel défini ci-dessus. Ici, nous utilisons la fonction de perte d'entropie croisée et l'algorithme d'optimisation de descente de gradient stochastique.

def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
Copier après la connexion

Enfin, nous devons définir une fonction d'inférence pour l'inférence de modèle au moment du déploiement.

def infer(model, device, data):
    model.eval()
    with torch.no_grad():
        output = model(data.to(device))
        pred = output.argmax(dim=1, keepdim=True)
        return pred.item()
Copier après la connexion

Grâce aux étapes ci-dessus, nous pouvons former et déployer un modèle simple de réseau neuronal convolutif.

  1. Résumé

Grâce à l'introduction de cet article, nous avons appris comment utiliser PyTorch pour l'apprentissage en profondeur dans la programmation serveur Python. En tant que cadre d'apprentissage profond flexible, PyTorch peut rapidement créer et former divers réseaux de neurones profonds, tout en présentant les avantages d'une facilité d'utilisation et de personnalisation. Nous pouvons utiliser PyTorch pour la formation de modèles, l'inférence de modèles et la gestion de modèles afin d'améliorer les performances du serveur et les capacités des applications.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Méthodes et étapes d'utilisation de BERT pour l'analyse des sentiments en Python Méthodes et étapes d'utilisation de BERT pour l'analyse des sentiments en Python Jan 22, 2024 pm 04:24 PM

BERT est un modèle de langage d'apprentissage profond pré-entraîné proposé par Google en 2018. Le nom complet est BidirectionnelEncoderRepresentationsfromTransformers, qui est basé sur l'architecture Transformer et présente les caractéristiques d'un codage bidirectionnel. Par rapport aux modèles de codage unidirectionnels traditionnels, BERT peut prendre en compte les informations contextuelles en même temps lors du traitement du texte, de sorte qu'il fonctionne bien dans les tâches de traitement du langage naturel. Sa bidirectionnalité permet à BERT de mieux comprendre les relations sémantiques dans les phrases, améliorant ainsi la capacité expressive du modèle. Grâce à des méthodes de pré-formation et de réglage fin, BERT peut être utilisé pour diverses tâches de traitement du langage naturel, telles que l'analyse des sentiments, la dénomination

La combinaison parfaite de PyCharm et PyTorch : étapes détaillées d'installation et de configuration La combinaison parfaite de PyCharm et PyTorch : étapes détaillées d'installation et de configuration Feb 21, 2024 pm 12:00 PM

PyCharm est un puissant environnement de développement intégré (IDE) et PyTorch est un framework open source populaire dans le domaine de l'apprentissage profond. Dans le domaine de l'apprentissage automatique et de l'apprentissage profond, l'utilisation de PyCharm et PyTorch pour le développement peut améliorer considérablement l'efficacité du développement et la qualité du code. Cet article présentera en détail comment installer et configurer PyTorch dans PyCharm, et joindra des exemples de code spécifiques pour aider les lecteurs à mieux utiliser les puissantes fonctions de ces deux éléments. Étape 1 : Installer PyCharm et Python

Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées Au-delà d'ORB-SLAM3 ! SL-SLAM : les scènes de faible luminosité, de gigue importante et de texture faible sont toutes gérées May 30, 2024 am 09:35 AM

Écrit précédemment, nous discutons aujourd'hui de la manière dont la technologie d'apprentissage profond peut améliorer les performances du SLAM (localisation et cartographie simultanées) basé sur la vision dans des environnements complexes. En combinant des méthodes d'extraction de caractéristiques approfondies et de correspondance de profondeur, nous introduisons ici un système SLAM visuel hybride polyvalent conçu pour améliorer l'adaptation dans des scénarios difficiles tels que des conditions de faible luminosité, un éclairage dynamique, des zones faiblement texturées et une gigue importante. Notre système prend en charge plusieurs modes, notamment les configurations étendues monoculaire, stéréo, monoculaire-inertielle et stéréo-inertielle. En outre, il analyse également comment combiner le SLAM visuel avec des méthodes d’apprentissage profond pour inspirer d’autres recherches. Grâce à des expériences approfondies sur des ensembles de données publiques et des données auto-échantillonnées, nous démontrons la supériorité du SL-SLAM en termes de précision de positionnement et de robustesse du suivi.

Intégration d'espace latent : explication et démonstration Intégration d'espace latent : explication et démonstration Jan 22, 2024 pm 05:30 PM

L'intégration d'espace latent (LatentSpaceEmbedding) est le processus de mappage de données de grande dimension vers un espace de faible dimension. Dans le domaine de l'apprentissage automatique et de l'apprentissage profond, l'intégration d'espace latent est généralement un modèle de réseau neuronal qui mappe les données d'entrée de grande dimension dans un ensemble de représentations vectorielles de basse dimension. Cet ensemble de vecteurs est souvent appelé « vecteurs latents » ou « latents ». encodages". Le but de l’intégration de l’espace latent est de capturer les caractéristiques importantes des données et de les représenter sous une forme plus concise et compréhensible. Grâce à l'intégration de l'espace latent, nous pouvons effectuer des opérations telles que la visualisation, la classification et le regroupement de données dans un espace de faible dimension pour mieux comprendre et utiliser les données. L'intégration d'espace latent a de nombreuses applications dans de nombreux domaines, tels que la génération d'images, l'extraction de caractéristiques, la réduction de dimensionnalité, etc. L'intégration de l'espace latent est le principal

Introduction à cinq méthodes d'échantillonnage dans les tâches de génération de langage naturel et l'implémentation du code Pytorch Introduction à cinq méthodes d'échantillonnage dans les tâches de génération de langage naturel et l'implémentation du code Pytorch Feb 20, 2024 am 08:50 AM

Dans les tâches de génération de langage naturel, la méthode d'échantillonnage est une technique permettant d'obtenir du texte à partir d'un modèle génératif. Cet article abordera 5 méthodes courantes et les implémentera à l'aide de PyTorch. 1. GreedyDecoding Dans le décodage gourmand, le modèle génératif prédit les mots de la séquence de sortie en fonction du temps de la séquence d'entrée pas à pas. À chaque pas de temps, le modèle calcule la distribution de probabilité conditionnelle de chaque mot, puis sélectionne le mot avec la probabilité conditionnelle la plus élevée comme sortie du pas de temps actuel. Ce mot devient l'entrée du pas de temps suivant et le processus de génération se poursuit jusqu'à ce qu'une condition de fin soit remplie, telle qu'une séquence d'une longueur spécifiée ou un marqueur de fin spécial. La caractéristique de GreedyDecoding est qu’à chaque fois la probabilité conditionnelle actuelle est la meilleure

Implémentation d'un modèle de diffusion de suppression du bruit à l'aide de PyTorch Implémentation d'un modèle de diffusion de suppression du bruit à l'aide de PyTorch Jan 14, 2024 pm 10:33 PM

Avant de comprendre en détail le principe de fonctionnement du modèle probabiliste de diffusion de débruitage (DDPM), comprenons d'abord une partie du développement de l'intelligence artificielle générative, qui est également l'une des recherches fondamentales du DDPM. VAEVAE utilise un encodeur, un espace latent probabiliste et un décodeur. Pendant l'entraînement, l'encodeur prédit la moyenne et la variance de chaque image et échantillonne ces valeurs à partir d'une distribution gaussienne. Le résultat de l'échantillonnage est transmis au décodeur, qui convertit l'image d'entrée sous une forme similaire à l'image de sortie. La divergence KL est utilisée pour calculer la perte. Un avantage significatif de la VAE est sa capacité à générer des images diversifiées. Lors de l'étape d'échantillonnage, on peut directement échantillonner à partir de la distribution gaussienne et générer de nouvelles images via le décodeur. Le GAN a fait de grands progrès dans le domaine des auto-encodeurs variationnels (VAE) en seulement un an.

Tutoriel sur l'installation de PyCharm avec PyTorch Tutoriel sur l'installation de PyCharm avec PyTorch Feb 24, 2024 am 10:09 AM

En tant que puissant framework d'apprentissage profond, PyTorch est largement utilisé dans divers projets d'apprentissage automatique. En tant que puissant environnement de développement intégré Python, PyCharm peut également fournir un bon support lors de la mise en œuvre de tâches d'apprentissage en profondeur. Cet article présentera en détail comment installer PyTorch dans PyCharm et fournira des exemples de code spécifiques pour aider les lecteurs à démarrer rapidement avec PyTorch pour des tâches d'apprentissage en profondeur. Étape 1 : Installer PyCharm Tout d’abord, nous devons nous assurer que nous avons

Comprendre en un seul article : les liens et les différences entre l'IA, le machine learning et le deep learning Comprendre en un seul article : les liens et les différences entre l'IA, le machine learning et le deep learning Mar 02, 2024 am 11:19 AM

Dans la vague actuelle de changements technologiques rapides, l'intelligence artificielle (IA), l'apprentissage automatique (ML) et l'apprentissage profond (DL) sont comme des étoiles brillantes, à la tête de la nouvelle vague des technologies de l'information. Ces trois mots apparaissent fréquemment dans diverses discussions de pointe et applications pratiques, mais pour de nombreux explorateurs novices dans ce domaine, leurs significations spécifiques et leurs connexions internes peuvent encore être entourées de mystère. Alors regardons d'abord cette photo. On constate qu’il existe une corrélation étroite et une relation progressive entre l’apprentissage profond, l’apprentissage automatique et l’intelligence artificielle. Le deep learning est un domaine spécifique du machine learning, et le machine learning

See all articles