Quels sont les quatre outils d'analyse du Big Data ?
Quels sont les quatre outils d'analyse du Big Data
1. rapidminer
Rapidminer est actuellement la première solution de data mining au monde. La raison pour laquelle il est très apprécié et reconnu par tous est liée à sa technologie avancée. Il couvre un large éventail d'exploration de données, et de nombreux experts ont déclaré lors de l'entretien qu'ils l'utilisent toujours pour simplifier la conception et l'évaluation du processus d'exploration de données.
2. Hpcc
Hpcc est un plan visant à accélérer l'autoroute de l'information. On rapporte qu'un total de 10 milliards de dollars américains ont été investis dans ce plan. Le but de la recherche et du développement initial est de développer des logiciels et des systèmes évolutifs. C'est ainsi que la technologie des réseaux Gigabit s'est développée. En raison de ses fortes capacités de transmission, il est utilisé pour l’analyse du Big Data.
3. Hadoop
De nos jours, de nombreux novices en analyse Big Data aiment utiliser Hadoop pour représenter directement l'analyse Big Data. La visibilité est très importante. L'une des raisons pour lesquelles il est très apprécié et reconnu par le public est qu'il part du principe que les éléments informatiques et le stockage peuvent tomber en panne, puis intervient sous plusieurs angles pour garantir que ces problèmes peuvent être contrôlés efficacement sans se produire.
IV. Pentaho bi
Il est très différent des produits bi traditionnels. Il s'agit d'un cadre centré sur le processus, rayonnant du centre vers l'extérieur, puis orienté vers les solutions. Pentaho bi apporte des changements révolutionnaires à l'analyse du Big Data. Son émergence permet de centraliser des produits indépendants tels que quartz et jfree, et peut également servir de base pour apporter des solutions efficaces à des travaux complexes de business intelligence.
Les quatre outils ci-dessus sont des outils essentiels pour les postes d'analyse du Big Data et doivent être utilisés de manière flexible et fluide. Même si vous pouvez comprendre les interfaces et les méthodes de fonctionnement des quatre outils ci-dessus, cela ne suffit pas. Sur cette base, vous devez apprendre l’ensemble du processus d’analyse du Big Data et les compétences associées en matière d’analyse du Big Data. Les Big Data analysées et résumées peuvent être utilisées comme base pour parcourir l'ensemble du processus plusieurs fois, afin que vous puissiez véritablement acquérir les compétences, appliquer ce que vous avez appris et faire carrière dans le poste d'analyse du Big Data.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Compétences en matière de traitement de la structure des Big Data : Chunking : décomposez l'ensemble de données et traitez-le en morceaux pour réduire la consommation de mémoire. Générateur : générez des éléments de données un par un sans charger l'intégralité de l'ensemble de données, adapté à des ensembles de données illimités. Streaming : lisez des fichiers ou interrogez les résultats ligne par ligne, adapté aux fichiers volumineux ou aux données distantes. Stockage externe : pour les ensembles de données très volumineux, stockez les données dans une base de données ou NoSQL.

AEC/O (Architecture, Engineering & Construction/Operation) fait référence aux services complets qui assurent la conception architecturale, la conception technique, la construction et l’exploitation dans le secteur de la construction. En 2024, l’industrie de l’AEC/O est confrontée à des défis changeants au milieu des progrès technologiques. Cette année devrait voir l’intégration de technologies avancées, annonçant un changement de paradigme dans la conception, la construction et l’exploitation. En réponse à ces changements, les industries redéfinissent les processus de travail, ajustent les priorités et renforcent la collaboration pour s'adapter aux besoins d'un monde en évolution rapide. Les cinq tendances majeures suivantes dans l'industrie AEC/O deviendront des thèmes clés en 2024, lui recommandant d'évoluer vers un avenir plus intégré, réactif et durable : chaîne d'approvisionnement intégrée, fabrication intelligente.

1. Contexte de la construction de la plateforme 58 Portraits Tout d'abord, je voudrais partager avec vous le contexte de la construction de la plateforme 58 Portraits. 1. La pensée traditionnelle de la plate-forme de profilage traditionnelle ne suffit plus. La création d'une plate-forme de profilage des utilisateurs s'appuie sur des capacités de modélisation d'entrepôt de données pour intégrer les données de plusieurs secteurs d'activité afin de créer des portraits d'utilisateurs précis. Elle nécessite également l'exploration de données pour comprendre le comportement et les intérêts des utilisateurs. et besoins, et fournir des capacités côté algorithmes ; enfin, il doit également disposer de capacités de plate-forme de données pour stocker, interroger et partager efficacement les données de profil utilisateur et fournir des services de profil. La principale différence entre une plate-forme de profilage d'entreprise auto-construite et une plate-forme de profilage de middle-office est que la plate-forme de profilage auto-construite dessert un seul secteur d'activité et peut être personnalisée à la demande. La plate-forme de mid-office dessert plusieurs secteurs d'activité et est complexe ; modélisation et offre des fonctionnalités plus générales. 2.58 Portraits d'utilisateurs de l'arrière-plan de la construction du portrait sur la plate-forme médiane 58

La technologie C++ peut gérer des données graphiques à grande échelle en exploitant les bases de données graphiques. Les étapes spécifiques incluent : la création d'une instance TinkerGraph, l'ajout de sommets et d'arêtes, la formulation d'une requête, l'obtention de la valeur du résultat et la conversion du résultat en liste.

À l’ère actuelle du Big Data, le traitement et l’analyse des données sont devenus un support important pour le développement de diverses industries. En tant que langage de programmation doté d'une efficacité de développement élevée et de performances supérieures, le langage Go a progressivement attiré l'attention dans le domaine du big data. Cependant, par rapport à d'autres langages tels que Java, Python, etc., le langage Go prend en charge relativement mal les frameworks Big Data, ce qui a causé des problèmes à certains développeurs. Cet article explorera les principales raisons du manque de framework Big Data dans le langage Go, proposera des solutions correspondantes et l'illustrera avec des exemples de code spécifiques. 1. Allez dans la langue

La technologie de traitement de flux est utilisée pour le traitement du Big Data. Le traitement de flux est une technologie qui traite les flux de données en temps réel. En C++, Apache Kafka peut être utilisé pour le traitement de flux. Le traitement de flux fournit un traitement des données en temps réel, une évolutivité et une tolérance aux pannes. Cet exemple utilise ApacheKafka pour lire les données d'un sujet Kafka et calculer la moyenne.

Dans le traitement du Big Data, l'utilisation d'une base de données en mémoire (telle qu'Aerospike) peut améliorer les performances des applications C++ car elle stocke les données dans la mémoire de l'ordinateur, éliminant ainsi les goulots d'étranglement d'E/S disque et augmentant considérablement les vitesses d'accès aux données. Des cas pratiques montrent que la vitesse de requête lors de l'utilisation d'une base de données en mémoire est plusieurs fois plus rapide que lors de l'utilisation d'une base de données sur disque dur.

Golang et big data : une adéquation parfaite ou en contradiction ? Avec le développement rapide de la technologie du Big Data, de plus en plus d’entreprises commencent à optimiser leurs activités et leur prise de décision grâce à l’analyse des données. Pour le traitement du Big Data, des langages de programmation efficaces sont cruciaux. Parmi les nombreux langages de programmation, Golang (langage Go) est devenu l'un des choix populaires pour le traitement du Big Data en raison de sa concurrence, de son efficacité, de sa simplicité et d'autres caractéristiques. Alors, Golang et big data sont-ils parfaitement compatibles ou contradictoires ? Cet article partira de l'application de Golang dans le traitement du Big Data,