Maison > développement back-end > Tutoriel Python > Implémentation d'un système de reconnaissance faciale à l'aide de Scrapy et OpenCV

Implémentation d'un système de reconnaissance faciale à l'aide de Scrapy et OpenCV

王林
Libérer: 2023-06-23 11:38:36
original
843 Les gens l'ont consulté

Utiliser Scrapy et OpenCV pour mettre en œuvre un système de reconnaissance faciale

Avec le développement continu de la technologie, l'application de la technologie de reconnaissance faciale devient de plus en plus courante. En termes d'assurer la sécurité publique et de réaliser une gestion intelligente, la technologie de reconnaissance faciale continue de s'étendre dans de nouveaux domaines. Cet article décrit comment implémenter un système de reconnaissance faciale à l'aide de Scrapy et OpenCV.

1. Introduction à Scrapy

Scrapy est un framework d'exploration basé sur Python utilisé pour obtenir des données à partir de sites Web. Scrapy permet le scraping de données de manière structurée et prend en charge l'extraction de données basée sur des sélecteurs XPath ou CSS. Scrapy peut personnaliser le middleware de téléchargement et les pipelines de traitement des données, rendant ainsi le traitement et le stockage des données plus flexibles.

2. Introduction à OpenCV

OpenCV est une puissante bibliothèque de vision par ordinateur qui fournit un grand nombre d'algorithmes de traitement d'images et de vidéos. Il peut être utilisé dans divers domaines, notamment la reconnaissance faciale, la reconnaissance de véhicules, le suivi en temps réel, etc. En utilisant OpenCV, vous pouvez facilement implémenter le filtrage d'image, les opérations arithmétiques, la détection de forme de base, la conversion de l'espace colorimétrique, l'égalisation d'histogramme et d'autres opérations.

3. Analyse des exigences du système de reconnaissance faciale

Le système de reconnaissance faciale doit remplir les fonctions suivantes :

  1. Obtenir certaines fonctions de Internet Un grand nombre d'images de visages.
  2. Utilisez OpenCV pour identifier l'image acquise et extraire la partie du visage de la personne cible.
  3. Analysez, classez et stockez les images de visage extraites.
  4. Saisissez une image de visage pour être reconnu et déterminer si le visage est similaire aux personnes déjà présentes dans la bibliothèque.

4. Mise en œuvre du projet

  1. Obtenir des photos de visage

Utilisez Scrapy pour explorer le visage du réseau des photos. En analysant la structure HTML du site Web cible, utilisez le framework d'exploration Scrapy pour obtenir des liens vers des images et les télécharger. Étant donné que la base de données de visages nécessite un grand nombre d'images, Scrapy peut être utilisé pour effectuer une exploration distribuée afin d'augmenter la vitesse d'exploration des images.

  1. reconnaissance faciale

Utilisez OpenCV pour la reconnaissance faciale. OpenCV fournit un classificateur en cascade appelé Haar, qui peut reconnaître les visages. Une formation est requise avant utilisation. Utilisez le classificateur Haar déjà entraîné pour détecter et obtenir les coordonnées de position du visage. Utilisez ensuite la fonction de traitement d'image dans OpenCV pour recadrer la partie du visage.

  1. classification des visages

Catégories photos de visages. La classification à l'aide d'algorithmes d'apprentissage automatique peut être effectuée via des arbres de décision traditionnels, des machines vectorielles de support et d'autres algorithmes. Dans les systèmes de reconnaissance faciale, l'algorithme de classification couramment utilisé est le réseau neuronal convolutif (CNN, Convolutional Neural Network). Des modèles de réseaux neuronaux convolutifs profonds peuvent être construits à l'aide de cadres d'apprentissage profond tels que TensorFlow, Keras ou PyTorch.

  1. Face Matching

Faites correspondre l'image du visage de la personne cible avec les visages existants dans la bibliothèque. Un algorithme couramment utilisé est la reconnaissance faciale. La correspondance des visages est effectuée en calculant les valeurs caractéristiques de deux images de visage.

5. Résumé

Cet article présente comment utiliser Scrapy et OpenCV pour implémenter un système de reconnaissance faciale. Tout d’abord, obtenez une certaine quantité d’images de visage via le framework Scrapy crawler. Utilisez ensuite OpenCV pour prétraiter l'image et effectuer la reconnaissance faciale. Ensuite, un algorithme d'apprentissage automatique est utilisé pour la classification et un algorithme d'écriture des caractéristiques du visage est utilisé pour la correspondance des visages. La technologie de reconnaissance faciale est de plus en plus utilisée dans la gestion de la sécurité sociale et dans divers domaines. Le contenu de cet article peut servir de référence aux chercheurs et développeurs concernés.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal