Golang apprenant l'équilibrage de charge du serveur Web
Avec le nombre croissant de scénarios d'application Internet, la question de l'équilibrage de charge sur le serveur Web fait l'objet de plus en plus d'attention. En particulier pour les sites à trafic élevé et à forte concurrence, l'équilibrage de charge peut améliorer considérablement les performances et la stabilité du système. Cet article explique comment utiliser Golang pour implémenter l'équilibrage de charge sur le serveur Web.
1. Le concept de base de l'équilibrage de charge
Le soi-disant équilibrage de charge fait référence à l'allocation d'un certain nombre de requêtes à plusieurs serveurs pour traitement, améliorant ainsi les performances et les performances. de l'ensemble du système. Le cœur de l'équilibrage de charge est l'algorithme de planification. Les algorithmes de planification courants incluent l'interrogation, l'interrogation pondérée, l'algorithme de hachage, etc. L'algorithme de planification spécifique sélectionné dépend du scénario d'application spécifique et des exigences commerciales.
2. Utilisez Golang pour réaliser l'équilibrage de charge
Golang, en tant que langage de programmation efficace, fournit également un bon support pour l'équilibrage de charge sur le serveur Web. La bibliothèque standard de Golang fournit le package net/http, que nous pouvons utiliser pour implémenter l'équilibrage de charge sur le serveur Web.
- Définir un proxy inverse HTTP
Tout d'abord, nous devons définir un proxy inverse HTTP. Le proxy inverse HTTP fait référence au transfert des demandes des clients vers plusieurs serveurs et au renvoi des résultats de la réponse au client. Le code est le suivant :
type Proxy struct { urls []*url.URL mu sync.Mutex } func (p *Proxy) addUrl(addr string) error { u, err := url.Parse(addr) if err != nil { return err } p.mu.Lock() p.urls = append(p.urls, u) p.mu.Unlock() return nil } func (p *Proxy) ServeHTTP(w http.ResponseWriter, r *http.Request) { p.mu.Lock() defer p.mu.Unlock() if len(p.urls) == 0 { http.Error(w, "No upstream server", http.StatusServiceUnavailable) return } u := p.urls[rand.Intn(len(p.urls))] proxy := httputil.NewSingleHostReverseProxy(u) proxy.ServeHTTP(w, r) }
Dans le code ci-dessus, nous définissons d'abord une structure Proxy, qui contient un pointeur slice urls pointant vers plusieurs URLs et un mutex mu. Dans la méthode addUrl, nous pouvons ajouter plusieurs URL aux URL. Dans la méthode ServeHTTP, nous utilisons un verrou mutex pour déterminer d'abord s'il existe des URL disponibles dans les URL. Sinon, nous renverrons un code d'état HTTP 503 indiquant que le service n'est pas disponible. Sinon, nous sélectionnons au hasard une URL parmi les URL et créons une instance de proxy inverse à l'aide de httputil.NewSingleHostReverseProxy. Enfin, nous appelons la méthode proxy.ServeHTTP pour transmettre la requête au serveur correspondant pour traitement.
- Utiliser des algorithmes de planification pour réaliser l'équilibrage de charge
Nous pouvons utiliser des algorithmes de planification tels que l'interrogation, l'interrogation pondérée et les algorithmes de hachage pour réaliser l'équilibrage de charge . Ce qui suit prend l'algorithme d'interrogation pondéré comme exemple à présenter.
type WeightedNode struct { URL string Weight int Current int } type WeightedRoundRobinBalancer struct { nodes []*WeightedNode total int current int mu sync.Mutex } func (b *WeightedRoundRobinBalancer) nextNode() *WeightedNode { if b.total == 0 { return nil } for i := 0; i < b.total; i++ { node := b.nodes[b.current] node.Current = node.Current + node.Weight b.current = (b.current + 1) % b.total if node.Current >= b.total { node.Current = node.Current - b.total return node } } return nil } func (b *WeightedRoundRobinBalancer) ServeHTTP(w http.ResponseWriter, r *http.Request) { b.mu.Lock() node := b.nextNode() b.mu.Unlock() if node == nil { http.Error(w, "No upstream server", http.StatusServiceUnavailable) return } proxy := httputil.NewSingleHostReverseProxy(node.URL) proxy.ServeHTTP(w, r) }
Dans le code ci-dessus, nous définissons d'abord une structure d'algorithme de planification à tour de rôle pondéré WeightedRoundRobinBalancer. La structure contient des nœuds de tranche de pointeur qui pointent vers plusieurs nœuds pondérés, le poids total total, le nœud actuel et un mutex mu. Dans la méthode nextNode, nous calculons le nœud suivant selon les règles d'interrogation pondérée. Dans la méthode ServeHTTP, nous utilisons un mutex pour sélectionner d'abord un nœud parmi les nœuds pondérés et créer une instance de proxy inverse à l'aide de httputil.NewSingleHostReverseProxy. Enfin, nous appelons la méthode proxy.ServeHTTP pour transmettre la requête au serveur correspondant pour traitement.
3. Résumé
Cet article présente comment utiliser Golang pour implémenter l'équilibrage de charge sur le serveur Web. Nous avons d'abord donné une brève introduction aux concepts de base de l'équilibrage de charge, puis implémenté un équilibreur de charge simple utilisant le proxy inverse fourni par le package net/http de Golang, et implémenté l'équilibrage de charge à l'aide d'un algorithme round-robin pondéré. J'espère que cet article pourra aider tout le monde à comprendre l'équilibrage de charge du serveur Web.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Lire et écrire des fichiers en toute sécurité dans Go est crucial. Les directives incluent : Vérification des autorisations de fichiers Fermeture de fichiers à l'aide de reports Validation des chemins de fichiers Utilisation de délais d'attente contextuels Le respect de ces directives garantit la sécurité de vos données et la robustesse de vos applications.

Comment configurer le pool de connexions pour les connexions à la base de données Go ? Utilisez le type DB dans le package base de données/sql pour créer une connexion à la base de données ; définissez MaxOpenConns pour contrôler le nombre maximum de connexions simultanées ; définissez MaxIdleConns pour définir le nombre maximum de connexions inactives ; définissez ConnMaxLifetime pour contrôler le cycle de vie maximum de la connexion ;

Le framework Go se distingue par ses hautes performances et ses avantages en matière de concurrence, mais il présente également certains inconvénients, tels qu'être relativement nouveau, avoir un petit écosystème de développeurs et manquer de certaines fonctionnalités. De plus, les changements rapides et les courbes d’apprentissage peuvent varier d’un cadre à l’autre. Le framework Gin est un choix populaire pour créer des API RESTful en raison de son routage efficace, de sa prise en charge JSON intégrée et de sa puissante gestion des erreurs.

La différence entre le framework GoLang et le framework Go se reflète dans l'architecture interne et les fonctionnalités externes. Le framework GoLang est basé sur la bibliothèque standard Go et étend ses fonctionnalités, tandis que le framework Go se compose de bibliothèques indépendantes pour atteindre des objectifs spécifiques. Le framework GoLang est plus flexible et le framework Go est plus facile à utiliser. Le framework GoLang présente un léger avantage en termes de performances et le framework Go est plus évolutif. Cas : gin-gonic (framework Go) est utilisé pour créer l'API REST, tandis qu'Echo (framework GoLang) est utilisé pour créer des applications Web.

Meilleures pratiques : créer des erreurs personnalisées à l'aide de types d'erreurs bien définis (package d'erreurs) fournir plus de détails consigner les erreurs de manière appropriée propager correctement les erreurs et éviter de masquer ou de supprimer les erreurs Wrap si nécessaire pour ajouter du contexte

Les données JSON peuvent être enregistrées dans une base de données MySQL à l'aide de la bibliothèque gjson ou de la fonction json.Unmarshal. La bibliothèque gjson fournit des méthodes pratiques pour analyser les champs JSON, et la fonction json.Unmarshal nécessite un pointeur de type cible pour désorganiser les données JSON. Les deux méthodes nécessitent la préparation d'instructions SQL et l'exécution d'opérations d'insertion pour conserver les données dans la base de données.

Comment résoudre les problèmes de sécurité courants dans le framework Go Avec l'adoption généralisée du framework Go dans le développement Web, il est crucial d'assurer sa sécurité. Ce qui suit est un guide pratique pour résoudre les problèmes de sécurité courants, avec un exemple de code : 1. Injection SQL Utilisez des instructions préparées ou des requêtes paramétrées pour empêcher les attaques par injection SQL. Par exemple : constquery="SELECT*FROMusersWHEREusername=?"stmt,err:=db.Prepare(query)iferr!=nil{//Handleerror}err=stmt.QueryR

La fonction FindStringSubmatch recherche la première sous-chaîne correspondant à une expression régulière : la fonction renvoie une tranche contenant la sous-chaîne correspondante, le premier élément étant la chaîne entière correspondante et les éléments suivants étant des sous-chaînes individuelles. Exemple de code : regexp.FindStringSubmatch(text,pattern) renvoie une tranche de sous-chaînes correspondantes. Cas pratique : Il peut être utilisé pour faire correspondre le nom de domaine dans l'adresse email, par exemple : email:="user@example.com", pattern:=@([^\s]+)$ pour obtenir la correspondance du nom de domaine [1].
