Comment implémenter un algorithme de recommandation avec PHP

王林
Libérer: 2023-07-09 06:00:01
original
1921 Les gens l'ont consulté

Comment implémenter un algorithme de recommandation avec PHP

Introduction :
L'algorithme de recommandation joue un rôle important dans les applications Internet d'aujourd'hui. Il peut fournir aux utilisateurs un contenu de recommandation personnalisé basé sur le comportement et les préférences de l'utilisateur. PHP, en tant que langage de script largement utilisé, peut également être utilisé pour implémenter des algorithmes de recommandation. Cet article présentera comment utiliser PHP pour implémenter un algorithme de recommandation simple basé sur un filtrage collaboratif et fournira des exemples de code correspondants.

1. Qu'est-ce que l'algorithme de filtrage collaboratif ? Le filtrage collaboratif est un algorithme de recommandation couramment utilisé. Il recommande des contenus susceptibles d'intéresser les utilisateurs en analysant les intérêts communs entre les utilisateurs. L'algorithme de filtrage collaboratif recherche d'autres utilisateurs ayant des passe-temps similaires à l'utilisateur actuel en fonction des similitudes entre les utilisateurs, puis formule des recommandations pour l'utilisateur actuel en fonction de l'évaluation d'un élément par ces utilisateurs similaires. Les algorithmes de filtrage collaboratif peuvent être divisés en deux types :

    Filtrage collaboratif basé sur l'utilisateur : utilisez les données comportementales d'autres utilisateurs ayant des intérêts communs avec l'utilisateur actuel pour faire des recommandations.
  1. Filtrage collaboratif basé sur les éléments : utilisez la similitude entre d'autres éléments et les éléments qui intéressent l'utilisateur actuel pour faire des recommandations.
Cet article prendra comme exemple l'algorithme de filtrage collaboratif basé sur l'utilisateur pour présenter comment utiliser PHP pour implémenter l'algorithme de recommandation.

2. Étapes de mise en œuvre

    Collecter les données sur le comportement des utilisateurs
  1. L'algorithme de recommandation doit s'appuyer sur les données de comportement des utilisateurs, telles que les évaluations des produits, les films préférés, l'historique de navigation, etc. Pour simplifier l'exemple, nous supposons qu'il existe déjà une table de données sur le comportement de l'utilisateur, qui contient des champs tels que l'ID utilisateur, l'ID de l'élément et l'évaluation de l'élément par l'utilisateur.
  2. Calcul de la similarité entre les utilisateurs

    Le calcul de la similarité entre les utilisateurs est au cœur de l'algorithme de filtrage collaboratif. Les méthodes de calcul de similarité couramment utilisées incluent la distance euclidienne, le coefficient de corrélation de Pearson, etc. Ici, nous utilisons le coefficient de corrélation de Pearson pour calculer la similarité entre les utilisateurs. La formule du coefficient de corrélation de Pearson est la suivante :

    similarity(u, v) = sum((r(u, i) - avg(u)) * (r(v, i) - avg(v))) / (sqrt(sum((r(u, i) - avg(u))^2)) * sqrt(sum((r(v, i) - avg(v))^2)))
    Copier après la connexion

    où similarité(u, v) représente la similitude entre les utilisateurs u et v, r(u, i) représente la note de l'utilisateur u sur l'élément i, avg(u) représente l'utilisateur. note moyenne de vous.

Ce qui suit est un exemple de fonction en PHP qui calcule le coefficient de corrélation de Pearson :

function pearson($ratings1, $ratings2) {
  $sum1 = $sum2 = $sumSq1 = $sumSq2 = $pSum = 0;
  $n = count($ratings1);

  foreach ($ratings1 as $item => $rating) {
    if (array_key_exists($item, $ratings2)) {
      $sum1 += $rating;
      $sum2 += $ratings2[$item];
      $sumSq1 += pow($rating, 2);
      $sumSq2 += pow($ratings2[$item], 2);
      $pSum += $rating * $ratings2[$item];
    }
  }

  $num = $pSum - ($sum1 * $sum2 / $n);
  $den = sqrt(($sumSq1 - pow($sum1, 2) / $n) * ($sumSq2 - pow($sum2, 2) / $n));

  if ($den == 0) return 0;

  return $num / $den;
}
Copier après la connexion

Cette fonction reçoit deux tableaux de notation en tant que paramètres et renvoie le coefficient de corrélation de Pearson entre les deux tableaux de notation.

    Recommandations pour les utilisateurs
  1. Après avoir calculé la similarité entre les utilisateurs, nous pouvons faire des recommandations pour l'utilisateur actuel en fonction de la similarité. Les étapes spécifiques sont les suivantes :
  2. Parcourez les données de comportement des utilisateurs et trouvez les k utilisateurs les plus similaires à l'utilisateur actuel.
  3. Sur la base des données d'évaluation de ces k utilisateurs, recommandez des articles que l'utilisateur actuel n'a pas évalués.
Ce qui suit est un exemple de fonction en PHP qui recommande des utilisateurs :

function recommend($user, $data, $k) {
  $total = array();
  $simSum = array();

  foreach ($data as $otherUser => $ratings) {
    if ($otherUser != $user) {
      $similarity = pearson($data[$user], $ratings);

      if ($similarity > 0) {
        foreach ($ratings as $item => $rating) {
          if (!array_key_exists($item, $data[$user])) {
            if (!array_key_exists($item, $total)) {
              $total[$item] = 0;
              $simSum[$item] = 0;
            }

            $total[$item] += $rating * $similarity;
            $simSum[$item] += $similarity;
          }
        }
      }
    }
  }

  $recommendations = array();
  foreach ($total as $item => $score) {
    $recommendations[$item] = $score / $simSum[$item];
  }

  arsort($recommendations);
  return $recommendations;
}
Copier après la connexion

Cette fonction reçoit l'utilisateur actuel, les données de comportement de l'utilisateur et le nombre d'éléments à recommander k comme paramètres, et renvoie un tableau associatif représentant la recommandation résultats, où la clé est l'ID de l'élément, la valeur est le score de recommandation.

4. Résumé

L'algorithme de filtrage collaboratif est un algorithme de recommandation couramment utilisé, qui peut obtenir un contenu de recommandation personnalisé. Cet article présente comment utiliser PHP pour implémenter un algorithme de filtrage collaboratif simple basé sur l'utilisateur et fournit des exemples de code correspondants. Bien entendu, de nombreux détails et optimisations de performances doivent être pris en compte dans les applications pratiques, telles que le traitement de données à grande échelle et la prévention du surajustement. J'espère que cet article pourra vous aider à démarrer la mise en œuvre d'algorithmes de recommandation et fournir des références pour une étude plus approfondie.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Étiquettes associées:
source:php.cn
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal