Table des matières
Concevez et exécutez le workflow de manière indépendante
Flux de travail de prévision
Flux de travail parallèle
Méthode principale
Conception de l'interface
Planification de l'interface
Maison Périphériques technologiques IA Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de l'Université du Zhejiang élimine le besoin de collecte

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de l'Université du Zhejiang élimine le besoin de collecte

Jul 13, 2023 pm 10:01 PM
数据 模型

Pour traiter les données, cet seul outil d'IA suffit !

En vous appuyant sur le grand modèle de langage (LLM) qui se cache derrière, il vous suffit de décrireles données que vous souhaitez voir en une phrase, et de lui laisser le reste !

Le traitement, l'analyse et même la visualisation peuvent être effectués facilement, Vous n'avez même pas besoin de faire la collecte vous-même.

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collectePictures

Cet assistant de données d'IA basé sur LLM s'appelle Data-Copilot et a été développé par l'équipe de l'Université du Zhejiang.

La prépublication de l'article concerné a été publiée.

Le contenu suivant est fourni par le contributeur

Divers secteurs tels que la finance, la météorologie et l'énergie génèrent chaque jour une grande quantité de données hétérogènes. Il existe un besoin urgent d’un outil permettant de gérer, traiter et afficher efficacement ces données.

DataCopilot gère et traite de manière autonome des données massives en déployant de grands modèles de langage pour répondre aux divers besoins des utilisateurs en matière de requêtes, de calculs, de prédictions, de visualisation et autres.

Il vous suffit de saisir du texte pour indiquer à DataCopilot les données que vous souhaitez voir, sans opérations fastidieuses, Pas besoin d'écrire votre propre code, DataCopilot transforme de manière autonome les données d'origine en un résultat de visualisation qui répond au mieux à l'intention de l'utilisateur.

Afin de parvenir à un cadre universel couvrant diverses formes de tâches liées aux données, l'équipe de recherche a proposé Data-Copilot.

Ce modèle résout les problèmes de risque de fuite de données, de faible puissance de calcul et d'incapacité à gérer des tâches complexes causées par la simple utilisation de LLM.

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collectePhotos

Lors de la réception de demandes complexes, Data-Copilot concevra et planifiera indépendamment des interfaces indépendantes pour construire un flux de travail répondant aux intentions de l'utilisateur.

Sans assistance humaine, il peut transformer habilement des données brutes provenant de différentes sources et dans différents formats en sortie humanisée telle que des graphiques, des tableaux et du texte.

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collectePhotos

Les principales contributions du projet Data-Copilot incluent :

  • Connecter des sources de données dans différents domaines et divers besoins des utilisateurs, réduisant ainsi le travail fastidieux et les connaissances professionnelles.
  • Permet une gestion, un traitement, une analyse, une prédiction et une visualisation autonomes des données, et peut transformer les données brutes en résultats informatifs qui répondent au mieux aux intentions des utilisateurs. Les
  • Tools ont la double identités de designer et scheduler, comprenant deux processus : le processus de conception de l'outil d'interface (designer) et le processus de planification (scheduler).
  • Data-Copilot Demo est construit sur la base des données du marché financier chinois.

Concevez et exécutez le workflow de manière indépendante

Autant prendre l'exemple suivant pour voir les performances de Data-Copilot :

Quel est le taux de croissance d'une année sur l'autre du bénéfice net de tous les titres constitutifs du Indice Shanghai Stock Exchange 50 au premier trimestre de cette année

Data-Copilot Nous avons conçu indépendamment un tel flux de travail :

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collectePhotos

Pour résoudre ce problème complexe, Data-Copilot utilise l'interface loop_rank pour implémenter plusieurs requêtes en boucle .

Data-Copilot a obtenu ce résultat après avoir exécuté ce workflow :

L'abscisse est le nom de chaque stock de composants, et l'ordonnée est le taux de croissance d'une année sur l'autre du bénéfice net au premier trimestre

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collectePhotos

En plus des processus généraux de traitement des données, Data-Copilot peut également générer une grande variété de flux de travail.

L'équipe de recherche a testé Data-Copilot dans deux modes de flux de travail : prédictif et parallèle.

Flux de travail de prévision

Data-Copilot peut également prédire des parties autres que les données connues. Par exemple, saisissez la question suivante :

Prédire le PIB trimestriel de la Chine au cours des quatre trimestres suivants

Data-Copilot déploie ce flux de travail :

Obtenir l'historique. Données PIB → Utiliser un modèle de régression linéaire pour prédire l'avenir → Tableau de sortie

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collecte image

Les résultats après exécution sont les suivants :

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collectePhotos

Flux de travail parallèle

Je veux voir les ratios cours/bénéfice de CATL et Kweichow Moutai au cours des trois dernières années

Le flux de travail correspondant est :

Obtenir les données sur le cours des actions → Calculer les indices associés → Générer des graphiques

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collecte Image

Le travail lié des deux actions est parallèle en même temps, et le graphique final est le suivant :

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collecteImage

Méthode principale

Data-Copilot est une méthode générale grand système de modèle de langage avec conception d'interface et Il y a deux étapes principales dans la planification de l'interface.

  • Conception de l'interface : l'équipe de recherche a conçu un processus d'auto-demande pour permettre à LLM de générer de manière autonome suffisamment de demandes à partir d'un petit nombre de demandes de semences. Ensuite, LLM conçoit et optimise de manière itérative l’interface en fonction des requêtes générées. Ces interfaces sont décrites en langage naturel, ce qui les rend faciles à étendre et à transférer entre différentes plateformes.
  • Planification de l'interface : après avoir reçu les demandes des utilisateurs, LLM planifie et appelle des outils d'interface basés sur des descriptions d'interface auto-conçues et des démonstrations en contexte, déploie un flux de travail qui répond aux besoins des utilisateurs et présente les résultats aux utilisateurs sous plusieurs formes.

Data-Copilot réalise un traitement et une visualisation hautement automatisés des données en générant automatiquement des requêtes et en concevant indépendamment des interfaces pour répondre aux besoins des utilisateurs et afficher les résultats aux utilisateurs sous diverses formes.

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collectePhotos

Conception de l'interface

Comme le montre l'image ci-dessus, la gestion des données doit être mise en œuvre en premier et la première étape nécessite des outils d'interface.

Data-Copilot concevra un grand nombre d'interfaces comme outils de gestion de données. Les interfaces sont des modules composés de langage naturel (description fonctionnelle) et de code (implémentation), qui sont responsables de tâches telles que l'acquisition et le traitement des données.

  • Tout d'abord, LLM utilise un petit nombre de requêtes de seed et génère indépendamment un grand nombre de requêtes (explorer les données par auto-demande) pour couvrir autant que possible divers scénarios d'application.
  • Ensuite, LLM conçoit les interfaces correspondantes à ces requêtes (définition de l'interface : inclut uniquement la description et les paramètres), et optimise progressivement la conception de l'interface (fusion d'interfaces) à chaque itération.
  • Enfin, les chercheurs ont utilisé les puissantes capacités de génération de code de LLM pour générer du code spécifique (implémentation d’interface) pour chaque interface de la bibliothèque d’interfaces. Ce processus sépare la conception de l'interface de la mise en œuvre spécifique, créant ainsi un ensemble polyvalent d'outils d'interface pouvant satisfaire la plupart des demandes.

Comme indiqué ci-dessous : Outil d'interface conçu par Data-Copilot pour le traitement des données

Analyse complète des données en une phrase, le nouvel assistant de données pour grands modèles de lUniversité du Zhejiang élimine le besoin de collecteimage

Planification de l'interface

Au cours de l'étape précédente, les chercheurs ont obtenu divers outils pour l'acquisition, le traitement et la visualisation des données. Outils d'interface communs. Chaque interface possède une description fonctionnelle claire et explicite. Comme le montre la figure ci-dessus pour les deux requêtes, Data-Copilot forme un flux de travail allant des données aux résultats sous plusieurs formulaires en planifiant et en appelant différentes interfaces dans des requêtes en temps réel.

  • Data-Copilot effectue d'abord une analyse d'intention pour comprendre avec précision la demande de l'utilisateur.
  • Une fois l'intention de l'utilisateur comprise avec précision, Data-Copilot planifiera un flux de travail raisonnable pour traiter la demande de l'utilisateur. Data-Copilot générera un JSON au format fixe qui représente chaque étape de la planification, tel que step={"arg":"", "function":"", "output":""", "description":""} .

Guidé par des descriptions d'interfaces et des exemples, Data-Copilot orchestre la planification des interfaces au sein de chaque étape, soit séquentiellement, soit en parallèle.

Data-Copilot réduit considérablement la dépendance à l'égard d'un travail et d'une expertise fastidieux en intégrant des LLM à chaque étape des tâches liées aux données, transformant automatiquement les données brutes en résultats de visualisation conviviaux basés sur les demandes des utilisateurs.

Page du projet GitHub : https://github.com/zwq2018/Data-Copilot

Adresse papier : https://arxiv.org/abs/2306.07209

HuggingFace DÉMO : https://huggingface .co/spaces/zwq2018/Data-Copilot

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Combien de temps faut-il pour battre Split Fiction?
3 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Open source! Au-delà de ZoeDepth ! DepthFM : estimation rapide et précise de la profondeur monoculaire ! Open source! Au-delà de ZoeDepth ! DepthFM : estimation rapide et précise de la profondeur monoculaire ! Apr 03, 2024 pm 12:04 PM

0. À quoi sert cet article ? Nous proposons DepthFM : un modèle d'estimation de profondeur monoculaire génératif de pointe, polyvalent et rapide. En plus des tâches traditionnelles d'estimation de la profondeur, DepthFM démontre également des capacités de pointe dans les tâches en aval telles que l'inpainting en profondeur. DepthFM est efficace et peut synthétiser des cartes de profondeur en quelques étapes d'inférence. Lisons ce travail ensemble ~ 1. Titre des informations sur l'article : DepthFM : FastMonocularDepthEstimationwithFlowMatching Auteur : MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Le modèle MoE open source le plus puissant au monde est ici, avec des capacités chinoises comparables à celles du GPT-4, et le prix ne représente que près d'un pour cent de celui du GPT-4-Turbo. Le modèle MoE open source le plus puissant au monde est ici, avec des capacités chinoises comparables à celles du GPT-4, et le prix ne représente que près d'un pour cent de celui du GPT-4-Turbo. May 07, 2024 pm 04:13 PM

Imaginez un modèle d'intelligence artificielle qui non seulement a la capacité de surpasser l'informatique traditionnelle, mais qui permet également d'obtenir des performances plus efficaces à moindre coût. Ce n'est pas de la science-fiction, DeepSeek-V2[1], le modèle MoE open source le plus puissant au monde est ici. DeepSeek-V2 est un puissant mélange de modèle de langage d'experts (MoE) présentant les caractéristiques d'une formation économique et d'une inférence efficace. Il est constitué de 236B paramètres, dont 21B servent à activer chaque marqueur. Par rapport à DeepSeek67B, DeepSeek-V2 offre des performances plus élevées, tout en économisant 42,5 % des coûts de formation, en réduisant le cache KV de 93,3 % et en augmentant le débit de génération maximal à 5,76 fois. DeepSeek est une entreprise explorant l'intelligence artificielle générale

KAN, qui remplace MLP, a été étendu à la convolution par des projets open source KAN, qui remplace MLP, a été étendu à la convolution par des projets open source Jun 01, 2024 pm 10:03 PM

Plus tôt ce mois-ci, des chercheurs du MIT et d'autres institutions ont proposé une alternative très prometteuse au MLP – KAN. KAN surpasse MLP en termes de précision et d’interprétabilité. Et il peut surpasser le MLP fonctionnant avec un plus grand nombre de paramètres avec un très petit nombre de paramètres. Par exemple, les auteurs ont déclaré avoir utilisé KAN pour reproduire les résultats de DeepMind avec un réseau plus petit et un degré d'automatisation plus élevé. Plus précisément, le MLP de DeepMind compte environ 300 000 paramètres, tandis que le KAN n'en compte qu'environ 200. KAN a une base mathématique solide comme MLP est basé sur le théorème d'approximation universelle, tandis que KAN est basé sur le théorème de représentation de Kolmogorov-Arnold. Comme le montre la figure ci-dessous, KAN a

Bonjour, Atlas électrique ! Le robot Boston Dynamics revient à la vie, des mouvements étranges à 180 degrés effraient Musk Bonjour, Atlas électrique ! Le robot Boston Dynamics revient à la vie, des mouvements étranges à 180 degrés effraient Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas entre officiellement dans l’ère des robots électriques ! Hier, l'Atlas hydraulique s'est retiré "en larmes" de la scène de l'histoire. Aujourd'hui, Boston Dynamics a annoncé que l'Atlas électrique était au travail. Il semble que dans le domaine des robots humanoïdes commerciaux, Boston Dynamics soit déterminé à concurrencer Tesla. Après la sortie de la nouvelle vidéo, elle a déjà été visionnée par plus d’un million de personnes en seulement dix heures. Les personnes âgées partent et de nouveaux rôles apparaissent. C'est une nécessité historique. Il ne fait aucun doute que cette année est l’année explosive des robots humanoïdes. Les internautes ont commenté : Les progrès des robots ont fait ressembler la cérémonie d'ouverture de cette année à des êtres humains, et le degré de liberté est bien plus grand que celui des humains. Mais n'est-ce vraiment pas un film d'horreur ? Au début de la vidéo, Atlas est allongé calmement sur le sol, apparemment sur le dos. Ce qui suit est à couper le souffle

L'IA bouleverse la recherche mathématique ! Le lauréat de la médaille Fields et mathématicien sino-américain a dirigé 11 articles les mieux classés | Aimé par Terence Tao L'IA bouleverse la recherche mathématique ! Le lauréat de la médaille Fields et mathématicien sino-américain a dirigé 11 articles les mieux classés | Aimé par Terence Tao Apr 09, 2024 am 11:52 AM

L’IA change effectivement les mathématiques. Récemment, Tao Zhexuan, qui a prêté une attention particulière à cette question, a transmis le dernier numéro du « Bulletin de l'American Mathematical Society » (Bulletin de l'American Mathematical Society). En se concentrant sur le thème « Les machines changeront-elles les mathématiques ? », de nombreux mathématiciens ont exprimé leurs opinions. L'ensemble du processus a été plein d'étincelles, intense et passionnant. L'auteur dispose d'une équipe solide, comprenant Akshay Venkatesh, lauréat de la médaille Fields, le mathématicien chinois Zheng Lejun, l'informaticien de l'Université de New York Ernest Davis et de nombreux autres universitaires bien connus du secteur. Le monde de l’IA a radicalement changé. Vous savez, bon nombre de ces articles ont été soumis il y a un an.

La vitalité de la super intelligence s'éveille ! Mais avec l'arrivée de l'IA qui se met à jour automatiquement, les mères n'ont plus à se soucier des goulots d'étranglement des données. La vitalité de la super intelligence s'éveille ! Mais avec l'arrivée de l'IA qui se met à jour automatiquement, les mères n'ont plus à se soucier des goulots d'étranglement des données. Apr 29, 2024 pm 06:55 PM

Je pleure à mort. Le monde construit à la folie de grands modèles. Les données sur Internet ne suffisent pas du tout. Le modèle de formation ressemble à « The Hunger Games », et les chercheurs en IA du monde entier se demandent comment nourrir ces personnes avides de données. Ce problème est particulièrement important dans les tâches multimodales. À une époque où rien ne pouvait être fait, une équipe de start-up du département de l'Université Renmin de Chine a utilisé son propre nouveau modèle pour devenir la première en Chine à faire de « l'auto-alimentation des données générées par le modèle » une réalité. De plus, il s’agit d’une approche à deux volets, du côté compréhension et du côté génération, les deux côtés peuvent générer de nouvelles données multimodales de haute qualité et fournir un retour de données au modèle lui-même. Qu'est-ce qu'un modèle ? Awaker 1.0, un grand modèle multimodal qui vient d'apparaître sur le Forum Zhongguancun. Qui est l'équipe ? Moteur Sophon. Fondé par Gao Yizhao, doctorant à la Hillhouse School of Artificial Intelligence de l’Université Renmin.

Vitesse Internet lente des données cellulaires sur iPhone : correctifs Vitesse Internet lente des données cellulaires sur iPhone : correctifs May 03, 2024 pm 09:01 PM

Vous êtes confronté à un décalage et à une connexion de données mobile lente sur iPhone ? En règle générale, la puissance de l'Internet cellulaire sur votre téléphone dépend de plusieurs facteurs tels que la région, le type de réseau cellulaire, le type d'itinérance, etc. Vous pouvez prendre certaines mesures pour obtenir une connexion Internet cellulaire plus rapide et plus fiable. Correctif 1 – Forcer le redémarrage de l'iPhone Parfois, le redémarrage forcé de votre appareil réinitialise simplement beaucoup de choses, y compris la connexion cellulaire. Étape 1 – Appuyez simplement une fois sur la touche d’augmentation du volume et relâchez-la. Ensuite, appuyez sur la touche de réduction du volume et relâchez-la à nouveau. Étape 2 – La partie suivante du processus consiste à maintenir le bouton sur le côté droit. Laissez l'iPhone finir de redémarrer. Activez les données cellulaires et vérifiez la vitesse du réseau. Vérifiez à nouveau Correctif 2 – Changer le mode de données Bien que la 5G offre de meilleures vitesses de réseau, elle fonctionne mieux lorsque le signal est plus faible

L'US Air Force présente son premier avion de combat IA de grande envergure ! Le ministre a personnellement effectué l'essai routier sans intervenir pendant tout le processus, et 100 000 lignes de code ont été testées 21 fois. L'US Air Force présente son premier avion de combat IA de grande envergure ! Le ministre a personnellement effectué l'essai routier sans intervenir pendant tout le processus, et 100 000 lignes de code ont été testées 21 fois. May 07, 2024 pm 05:00 PM

Récemment, le milieu militaire a été submergé par la nouvelle : les avions de combat militaires américains peuvent désormais mener des combats aériens entièrement automatiques grâce à l'IA. Oui, tout récemment, l’avion de combat IA de l’armée américaine a été rendu public pour la première fois, dévoilant ainsi son mystère. Le nom complet de ce chasseur est Variable Stability Simulator Test Aircraft (VISTA). Il a été personnellement piloté par le secrétaire de l'US Air Force pour simuler une bataille aérienne en tête-à-tête. Le 2 mai, le secrétaire de l'US Air Force, Frank Kendall, a décollé à bord d'un X-62AVISTA à la base aérienne d'Edwards. Notez que pendant le vol d'une heure, toutes les actions de vol ont été effectuées de manière autonome par l'IA ! Kendall a déclaré : "Au cours des dernières décennies, nous avons réfléchi au potentiel illimité du combat air-air autonome, mais cela a toujours semblé hors de portée." Mais maintenant,

See all articles