


L'outil de détection d'écriture de l'intelligence artificielle n'est pas fiable et la Constitution américaine aurait été écrite par un robot
Le 16 juillet, certains internautes ont récemment découvert que si le document juridique le plus important des États-Unis, la Constitution des États-Unis, était saisi dans certains outils spécialement conçus pour détecter les écrits de l'intelligence artificielle, un résultat surprenant serait obtenu : les États-Unis La Constitution de l’État est presque. Elle doit avoir été écrite par l’intelligence artificielle. À moins que James Madison ne soit un voyageur temporel, cela est évidemment impossible. Alors pourquoi ces outils de détection d’IA commettent-ils de telles erreurs ? Le média étranger Arstechnica a interviewé plusieurs experts et le développeur de l'outil de détection d'IA GPTZero pour en découvrir les raisons.
Dans le domaine de l'éducation, l'écriture par intelligence artificielle a suscité de nombreuses controverses. Les enseignants utilisent depuis longtemps des méthodes d’enseignement traditionnelles, utilisant les dissertations comme outil pour évaluer la maîtrise d’une matière par les élèves. Jusqu’à présent, les preuves suggèrent que de nombreux enseignants qui s’appuient sur des outils d’IA pour détecter l’écriture générée par l’IA se révèlent peu fiables. En raison de la présence de faux positifs, les outils de détection d'IA tels que GPTZero, ZeroGPT et les classificateurs de texte d'OpenAI ne sont pas fiables et ne peuvent pas être utilisés pour déterminer si un article est généré par un grand modèle de langage (LLM).
Lorsque vous introduisez une partie de la Constitution américaine dans GPTZero, GPTZero dit que le texte "a probablement été entièrement écrit par l'IA". Au cours des six derniers mois, des captures d’écran présentant des résultats similaires ont été largement diffusées sur les réseaux sociaux grâce à d’autres outils de détection d’IA. En fait, la même chose se produit si vous saisissez quelque chose de la Bible. Pour comprendre pourquoi ces outils commettent des erreurs aussi évidentes, nous devons d’abord comprendre comment ils fonctionnent.
Selon IT House, différents détecteurs d'écriture d'intelligence artificielle utilisent des méthodes de détection légèrement différentes, mais les principes de base sont similaires : via un modèle d'intelligence artificielle, basé sur une grande quantité de texte (comprenant des millions d'exemples d'écriture) et un ensemble d'hypothèses ont été formés aux règles utilisées pour déterminer si l’écriture est plus susceptible d’avoir été générée par un humain ou une IA.
Par exemple, au cœur de GPTZero se trouve un réseau de neurones formé sur « un corpus vaste et diversifié d’écritures humaines et de textes générés par l’IA, en mettant l’accent sur la prose anglaise ». Ensuite, Le système utilise des attributs tels que « perplexité » et « urgence » pour évaluer le texte et le classer.
En machine learning, la perplexité est une mesure de l'écart entre un morceau de texte et ce qu'un modèle d'intelligence artificielle a appris lors d'une formation. L’idée derrière la mesure de la perplexité est que lorsque les modèles d’IA écrivent, ils choisissent naturellement le contenu qui leur est le plus familier à partir de leurs données d’entraînement. Plus le résultat est proche des données d’entraînement, plus la perplexité est faible. Les humains sont des écrivains plus déroutants, et les humains peuvent également écrire avec une faible confusion, en particulier lorsqu'ils imitent le style formel utilisé en droit ou dans certains types d'écriture académique. Et bon nombre des expressions que nous utilisons sont étonnamment courantes.
A titre d'exemple, essayons de deviner le mot suivant dans cette phrase : "Je veux une tasse de _____". » La plupart des gens rempliraient les espaces avec « eau », « café » ou « thé ». Un modèle linguistique formé sur une grande quantité de texte anglais ferait de même, car ces expressions apparaissent fréquemment dans l'écriture anglaise, comme le montre l'exemple ci-dessous. Ces résultats. L'un ou l'autre aura un faible niveau de perplexité.
Une autre propriété du texte que GPTZero mesure est « l'éclatement », qui fait référence au phénomène de certains mots ou phrases apparaissant en succession rapide ou « éclatant » dans le texte. l'urgence évalue la variabilité de la longueur et de la structure des phrases tout au long du texte Les écrivains humains présentent souvent des styles d'écriture dynamiques, ce qui donne lieu à des textes avec une longueur et une structure de phrase variables, tandis que les textes générés par l'IA ont tendance à être plus cohérents et uniformes. Ce n'est pas une mesure infaillible pour détecter le contenu généré par l'IA. Comme pour la perplexité, il existe des exceptions où les écrivains humains peuvent écrire dans un style hautement structuré et cohérent, ce qui entraîne des scores émergents plus élevés. Au lieu de cela, les modèles d'IA peuvent être entraînés pour simuler davantage de données humaines. comme la variabilité de la longueur et de la structure des phrases, améliorant ainsi leurs scores d'urgence. En fait, à mesure que les modèles de langage de l'IA s'améliorent, la recherche montre qu'ils améliorent leur écriture.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Améliorez la productivité, l’efficacité et la précision des développeurs en intégrant une génération et une mémoire sémantique améliorées par la récupération dans les assistants de codage IA. Traduit de EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, auteur JanakiramMSV. Bien que les assistants de programmation d'IA de base soient naturellement utiles, ils ne parviennent souvent pas à fournir les suggestions de code les plus pertinentes et les plus correctes, car ils s'appuient sur une compréhension générale du langage logiciel et des modèles d'écriture de logiciels les plus courants. Le code généré par ces assistants de codage est adapté à la résolution des problèmes qu’ils sont chargés de résoudre, mais n’est souvent pas conforme aux normes, conventions et styles de codage des équipes individuelles. Cela aboutit souvent à des suggestions qui doivent être modifiées ou affinées pour que le code soit accepté dans l'application.

Les grands modèles linguistiques (LLM) sont formés sur d'énormes bases de données textuelles, où ils acquièrent de grandes quantités de connaissances du monde réel. Ces connaissances sont intégrées à leurs paramètres et peuvent ensuite être utilisées en cas de besoin. La connaissance de ces modèles est « réifiée » en fin de formation. À la fin de la pré-formation, le modèle arrête effectivement d’apprendre. Alignez ou affinez le modèle pour apprendre à exploiter ces connaissances et répondre plus naturellement aux questions des utilisateurs. Mais parfois, la connaissance du modèle ne suffit pas, et bien que le modèle puisse accéder à du contenu externe via RAG, il est considéré comme bénéfique de l'adapter à de nouveaux domaines grâce à un réglage fin. Ce réglage fin est effectué à l'aide de la contribution d'annotateurs humains ou d'autres créations LLM, où le modèle rencontre des connaissances supplémentaires du monde réel et les intègre.

Pour en savoir plus sur l'AIGC, veuillez visiter : 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou est différent de la banque de questions traditionnelle que l'on peut voir partout sur Internet. nécessite de sortir des sentiers battus. Les grands modèles linguistiques (LLM) sont de plus en plus importants dans les domaines de la science des données, de l'intelligence artificielle générative (GenAI) et de l'intelligence artificielle. Ces algorithmes complexes améliorent les compétences humaines et stimulent l’efficacité et l’innovation dans de nombreux secteurs, devenant ainsi la clé permettant aux entreprises de rester compétitives. LLM a un large éventail d'applications. Il peut être utilisé dans des domaines tels que le traitement du langage naturel, la génération de texte, la reconnaissance vocale et les systèmes de recommandation. En apprenant de grandes quantités de données, LLM est capable de générer du texte

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Editeur | KX Dans le domaine de la recherche et du développement de médicaments, il est crucial de prédire avec précision et efficacité l'affinité de liaison des protéines et des ligands pour le criblage et l'optimisation des médicaments. Cependant, les études actuelles ne prennent pas en compte le rôle important des informations sur la surface moléculaire dans les interactions protéine-ligand. Sur cette base, des chercheurs de l'Université de Xiamen ont proposé un nouveau cadre d'extraction de caractéristiques multimodales (MFE), qui combine pour la première fois des informations sur la surface des protéines, la structure et la séquence 3D, et utilise un mécanisme d'attention croisée pour comparer différentes modalités. alignement. Les résultats expérimentaux démontrent que cette méthode atteint des performances de pointe dans la prédiction des affinités de liaison protéine-ligand. De plus, les études d’ablation démontrent l’efficacité et la nécessité des informations sur la surface des protéines et de l’alignement des caractéristiques multimodales dans ce cadre. Les recherches connexes commencent par "S

Selon les informations de ce site le 1er août, SK Hynix a publié un article de blog aujourd'hui (1er août), annonçant sa participation au Global Semiconductor Memory Summit FMS2024 qui se tiendra à Santa Clara, Californie, États-Unis, du 6 au 8 août, présentant de nombreuses nouvelles technologies de produit. Introduction au Future Memory and Storage Summit (FutureMemoryandStorage), anciennement Flash Memory Summit (FlashMemorySummit) principalement destiné aux fournisseurs de NAND, dans le contexte de l'attention croissante portée à la technologie de l'intelligence artificielle, cette année a été rebaptisée Future Memory and Storage Summit (FutureMemoryandStorage) pour invitez les fournisseurs de DRAM et de stockage et bien d’autres joueurs. Nouveau produit SK hynix lancé l'année dernière
